期刊文献+

原子氢与金刚石表面的相互作用 被引量:1

STUDIES ON THE INTERACTION OF HYDROGEN ATOMS WITH DIAMOND SURFACE
原文传递
导出
摘要 用高分辨率电子能量损失谱研究了氢原子吸附在金刚石表面的各种振动模式,其中主要是位于360meV处的C—H键的伸长振动和位于160meV处的“剪”振动。用氚原子代替氢原子吸附在金刚石表面,观测到上述振动模式所发生的同位素位移。将金刚石表面加热至900℃后,各种振动模式全部消失,这时吸附氢原子全部脱去,金刚石表面的悬键变成平躺在表面上,导致金刚石表面石墨化。由于石墨化后π-带的作用,在损失谱上出现一个非弹性的、连续的损失峰结构。我们用UPS和AES技术进一步证实了脱氢后金刚石表面的石墨化。 The vibration modes of hydrogen-atom adsorption on the diamond surface were studied with high resolution-electron energy loss spectroscopy. Two main losses were observed at 360 meV and 160 meV. They are assigned to the C-H stretch vibrations and the angle-changing deformation vibrations respectively. Replacing H-atom with D-atom, isotropic shifts were observed in the loss spectra. Heating the diamond surface to 900℃, all of the loss features disappear, but an inelastic continuous loss-structure was observed. Due to H-atom desorp-tion, the dangling-bonds became horizontal bonds on the diamond surface, resulting in the gra-phitization of diamond surface. The appearance of the inelastic continuous loss-structure was the characteristic of graphite π-band. The graphitization of the diamond surface was affirmed further by UPS and AES studies.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 1991年第4期667-672,共6页 Acta Physica Sinica
  • 相关文献

参考文献1

  • 1匿名著者,分子光谱与分子结构,1986年

同被引文献20

  • 1Achard J, Silva F, Tallaire A, et al. High Quality MPACVD Diamond Single Crystal Growth: High Microwave Power Density Regime [ J ]. Journal of Physics D : Applied Physics, 2007,40 ( 20 ) :6175-88.
  • 2Brinza O, Achard J, Silva F, et al. Dependence of CVD Diamond Growth Rate on Substrate Orientation as a Function of Process Farameters in the High Microwave Power Density Regime [ J ]. Physica Status Solidi ( a ) ,2008,205 ( 9 ) : 2114 -20.
  • 3Chayahara A, Mokuno Y, Horino Y, et al. The Effect of Nitrogen Addition During High-Rate I-Iomoepitaxial Growth of Diamond by Microwave Plasma CVD [ J ]. Diamond and Related Materials ,2004,13 ( 11-12 ) : 1954-8.
  • 4Muller-Sebert W, Wrner E, Fuchs F, et al. Nitrogen Induced Increase of Growth Rate in Chemical Vapor Deposition of Diamond[ J]. Applied Physics Letters, 1996,68 (6) :759.
  • 5Tallaire A, Collins A T, Charles D, et al. Characterisation of High-Quality Thick Single-Crystal Diamond Grown by CVD with a Low Nitrogen Addition [ J ]. Diamond and Related Materials,2006,15 ( 10 ) : 1700-7.
  • 6Bradac C, Gaebel T, Rabeau J R. Nitrogen-Vacancy Color Centers in Diamond: Properties, Synthesis, and Applications, in Optical Engineering of Diamond[ M]. Germany,Wiley-VCH Verlag GmbI-I&Co. KGaA,2013:143-175.
  • 7Zhu W, Inspektor A, Badzian A R, et al. Effects of Noble Gases on Diamond Deposition from Methane-Hydrogen Microwave Plasmas[ J]. Journal of Applied Physics, 1990,68(4) : 1489.
  • 8Barbosa D C, Barreto P R P, Trava-Airoldi V J, et al. Growth and Characterization of Diamond Micro and Nano Crystals Obtained Using Different Methane Concentration in Argon-Rich Gas Mixture[J]. Diamond and Related Materials,2010,19(7-9) :768-71.
  • 9Huang T B, Tang W Z, Lu F X, et al. Argon-to-Hydrogen Ratio in Plasma Jet Diamond Chemical Vapour Deposition[ J]. Surface arwl Coatings Technology,2005,190( 1 ) :48-53.
  • 10Vikharev A L, Gorbachev A M, Kozlov A V, et al. Microcrystalline Diamond Growth in Presence of Argon in Millimeter-Wave Plasma-Assisted CVD Reactor[ J]. Diamond and Related Materials,2008,17(7-10) : 1055-61.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部