期刊文献+

一种基于fMRI激活实验数据分析的新方法

A new approach for analyzing activation experiment data based on fMRI
下载PDF
导出
摘要 多种有关用统计学原理来分析fMRI数据这方面的方法已经被提出,并且得到了广泛的应用。这些分析方法的目的是为了产生一幅图像以用于确定任务相关的显著信号变化区。本文提出了一种控制—参考—频率法,该方法通过对时间序列的谱密度进行非参数估计来测试任务频率和血液动力学响应之间的关系,从而达到激活区定位的目的。之后本文通过分析同一组fMRI数据将这种方法和统计参数映射法和相关法进行了比较。实验结果证明了本文所提出的方法在探测由于运动任务所产生的激活区方面是有效的。该方法非常适合探测刺激任务是以周期序列的形式产生时的激活区。 Many strategies have been proposed for statistically analyzing functional magnetic resonance imaging (fMRI) data, and a variety of these are in general use. The aim of such analysis is to produce an image identifying the regions which show significant signal change in response to the task. A controlled-reference-frequency method is proposed in this paper, the proposed method involves testing for relations between the task frequencies and the hemodynamic response via non-parametric estimation of the spectral density of the time series to achieve location of the activated regions.After describing these strategies, the paper compared this method with Statistical Parametric Mapping (SPM)and correlation techniques by analyzing the same fMRI data sets. Experimental results demonstrate that the proposed method is effective for detecting activations resulting from a motor task.The proposed strategy is quite suitable for detecting active region when the stimulus task is presented in periodic sequence.
出处 《中国医学物理学杂志》 CSCD 2002年第2期85-87,112,共4页 Chinese Journal of Medical Physics
基金 国家自然科学基金资助项目(60171003) 湖南省自然科学基金资助项目(00JJY2060) 高等学校骨干教师基金
关键词 FMRI 激活实验 数据分析 功能磁共振成像 统计参数映射 设计矩阵 控制-参考-频率 大脑皮层 fMRI SPM Talairach space design matrix controlled-reference-frequency
  • 相关文献

参考文献11

  • 1[1]Bullmore E, Brammer M. Williams S.C.R. et al. Statistical meth-ods of estimation and inference for functional MR image analysis[J].Magn. Reson. Med, 1996, 35:261-277.
  • 2[2]Friston K J, Jezzard P., and Turner R. Analysis of functional MRI time-se-ties[J]. Human. Brain Mapping, 1994, 1:153-171.
  • 3[3]Worsley K. and Friston K. Analysis of fMRI series revisited-Again [J].Neurolmage, 1995, 2: 173-181.
  • 4[4]Friston KJ, Holmes A, Poline J-B, et al. Detecting Activation in PET and fMRI: Levels of Inference and Power[J]. NeuroImage, 1995, 4:223-235.
  • 5[5]Price CJ & Friston KJ. Cognitive Conjunction: A New Approach to Brain Activation Experiments[J]. NeuroImage, 1996, 5:261-270.
  • 6[6]Purdon, P. L., and Weisskoff. Effect of temporal autocorrelations due to physiological noise stimulus paradigm on voxel-level false positive rates in fMRI[J]. Human. Brain Mapping, 1998, 6: 239-249.
  • 7[7]Friston KJ, Ashburner J, Poline JB, et al. Spatial Registration and Nor malization of Images[J]. Human Brain Mapping, 1995, 2:165-189.
  • 8[8]Friston KJ, CD Frith et al. The relationship between local and global changes in PET scans[J]. J Cereb Blood Flow Metab, 1990, 10:458-466.
  • 9[9]Zhen. Lei, D.W. Hu, et al. Implementation of statistical parametric map-ping for fMRI data analysis using motion-control paradigm[C]. The 4th AMSE Int. Conf. On Modeling and Simulation, Changsha, China, 2001.
  • 10[10]Jonathan L. Marchini and Brian D. Ripley. A new statistical approach to detecting significant activation in functional MRI[J]. NeuroImage,2000, 12: 366-380.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部