期刊文献+

正规实型对称空间上一种极大函数的可和性

The Summability of a Maximal Function on the Symmetric Space of a Normal Real Form
原文传递
导出
摘要 Noel Lohoue证明了复对称空间上形如的极大函数的可和性可归结为 的可和性及f(x)叫的可和性.本文利用正规实型对称空间上热核的一个上界估计,证明了上述结果对正规实型对称空间亦成立. Noel Lohoue has proved the summability of a maximal function such as on the complex symmetric space can be reduced to the summability of and the summability of f(x). In this paper, a similar result was proved on the symmetric space of a normal real form, by use of an upper-bounded estimation of the heat kernel on the symmetric space of a normal real form.
作者 陈奕俊
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第3期425-432,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19971039) 广东省自然科学基金(990444)
关键词 正规实型 热核 POISSON核 Normal real form Heat kernel Poisson kernel
  • 相关文献

参考文献10

  • 1Helgason S., Differential Geometry Lie groups and Symmetric Spaces, New York: Academic Press, 1978.
  • 2Flensted-Jensen M., Spherical Functions on a Real semisimple Lie group: A Method of Reduction to thecomplex case, Journal of Functional Analysis, 1978, 30: 106-146.
  • 3Zhu Fuliu, The heat kernel on the second kind of classical domain and the symmetric space of a normal realform, Chinese Annals of Mathematics (Ser. A), 1992, 13(4): 385-399 (in Chinese).
  • 4Lohoué N., Transformé de Riesz et fonctions Sommables, Amer. J. of Math., 1992, 114(4): 875-921.
  • 5Anker J. P., Lohoué N., Multiplicatieurs Sur certains espaces symetriques, Amer. J. ofMath., 1986, 108:1303-1354.
  • 6Magnus W., Oberhettinger F., Soni R., Formulas and Theorems for the Special Functions of MathematicalPhysics, Grundlenbren 52, Springer 1960.
  • 7Helgason S., Groups and Geometric Analysis, New York: Academic Press, 1984.
  • 8Anker J. P., La forme exact de I'estimation fondamentale de Harish-Chandra, C. R. Acad. Sci. Paris, SerieI, 1987, 305: 371-374.
  • 9Zhu Fuliu, Almost everywhere convergence of Riesz means on the symmetric space of a normal real form, ActaMathematica Scientia, 1996, 16(4): 444-452 (in Chinese).
  • 10Zhang Gongqing, Lin Yuanqu, Lectures in Functional Analysis (Vol I), Beijing: Beijing University Press,1987 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部