摘要
Noel Lohoue证明了复对称空间上形如的极大函数的可和性可归结为 的可和性及f(x)叫的可和性.本文利用正规实型对称空间上热核的一个上界估计,证明了上述结果对正规实型对称空间亦成立.
Noel Lohoue has proved the summability of a maximal function such as on the complex symmetric space can be reduced to the summability of and the summability of f(x). In this paper, a similar result was proved on the symmetric space of a normal real form, by use of an upper-bounded estimation of the heat kernel on the symmetric space of a normal real form.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第3期425-432,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19971039)
广东省自然科学基金(990444)