期刊文献+

亚纯函数的不动点与拟正规族 被引量:1

Fixpoints of Mermorphic Functions and Quasinormal Families
原文传递
导出
摘要 本文研究了亚纯函数的不动点与拟正规族的关系,得到了以下结果:设F 是区域D内的亚纯函数族,q是一个非负整数.如果对任意的f∈F存在自然数k=k(f)>1使得f的 k次迭代f~k在 D内最多有 q个不动点,则F是 D内阶至多为max{4,q+3}的拟正规族. This paper studies the relationship between fixpoints of meromorphic func- tions and quasinormal families and the following results are obtained. Let F be a family of meromorphic functions in domain D and let q be a nonnegative integer. If for every f∈F there is a positive integer k = k(f) > 1 such that the k-th iteration jk of f has at most q fixpoints in D, then F is a quasinormal family with order at most max{4, q + 3} in D.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第3期545-550,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19871002)
关键词 亚纯函数 不动点 拟正规族 Meromorphic functions Fixpoint Quasinormal family
  • 相关文献

参考文献7

  • 1Essen M., Wu S., Repulsive fixpoint of analytic functions with application to complex dynamics, J. LondonMath. Soc., 2000, 62(2): 139-148.
  • 2Yang L., Some Recent Results and Problems in the Theory of Value-Distribution, in Proceedings of theSmposium on Vlue Dstribution Theory in Several Complex Variables, (W. Stoll, ed.) Univ. of Notre DamePress, Notre Dame Math. Lect. 1992, 12: 157-171.
  • 3Chung C. T., Normal Families of Meromorphic Functions, Singapore: World Scientific, 1993.
  • 4Bargmann D., Bergweiler W., Periodic points and normal families, Proc. AMS, to appear.
  • 5Essen M., Wu S., Fix-points and normal family analytic functions, Complex Variables, 1998, 37: 171-178.
  • 6Hayman W., Meromorphic Functions, Oxford: Clarendon Press, 1964.
  • 7Zalcman A., Heuristic principle in complex function theory, Amer. Math. Monthly, 1972, 85: 813-817.

同被引文献4

  • 1YANG L. Some recent results and problems in the theory of value-distribution in procedings of the symposium on value distribution theory in several complex vari-ables [J]. Univ of Notre Dame Press, Notre Dame Math Lect , 1992, 12: 157--171.
  • 2ESSEN M, WU S. Repulsive fixpoint of analytic functions with application to complex dynamics [J].J London Math Soc, 2000, 62(2): 139--148.
  • 3BARGMANN D, BERGWEILER W. Periodic Points and Normal Families [M]. Proc Ams, to appear.
  • 4HAYMAN W. Meromorphic Function [M]. Clarendon Press, Oxford, 1964.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部