期刊文献+

模任意子Hopf代数的商余代数的诱导作用

Induced Actions of Quotient Coalgebras Relative to Arbitrary Hopf Subalgebras
原文传递
导出
摘要 设 H是域 k上的有限维 Hopf代数,K为 H的任意子 Hopf代数,A是右 H-余模代数.设 =(H/K+ H)*和,且有 c∈A,t ·c=1.本 文刻划了 A作为 A# *-模的投射性且证明了:如果A/AH*是 H-Frobenius扩张, 则 A /AH*是 K-Frobenius扩张;如果 A/AH*是 H-Galois扩张,则 A */AH*是 K-Galois扩张. Let H be a finite dimensional Hopf algebra over a field k, K a Hopf subalgebra of H and A an H-comodule algebra. In this paper, we characterize the projectivity of A as an A# *-module and show that if and A/AH* is H-Frobenius, then A */AH* is K-Frobenius. In particular, if A/AH* is H-Galois, then A */AH*is K-Galois, where and
作者 张辉 王志玺
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第3期589-592,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19871057) 北京市自然科学基金资助项目(1992004)
关键词 HOPF代数 商余代数 SMASH积 余模代数 GALOIS扩张 Frobenius扩经 Smash product Comodule algebra: Galois extension Frobenius extension
  • 相关文献

参考文献6

  • 1Yang Shilin, Chen Jianai, Hopf action on factor rings and induced Hopf actions, Comm. in Algebra, 1997,25(4): 1103-1110.
  • 2Fischman D., Montgomery S., Schneider H. J., Frobenius extension of subalgebras of Hopf algebras, Trans.AMS, 1997, 349: 4857-4895.
  • 3Montgomery S., Hopf Algebras and Their Actions on Rings, CBMS Lectures in Math., Vol. 82, AMS,Providence, 1993.
  • 4Schneider H. -J., Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra, 1992, 152:289-312.
  • 5Montgomery S., Witherspoon S. J., Irreducible representations of crossed products, J. Pure and AppliedAlgebra, 1998, 129: 315-326.
  • 6Zhang Y. H., Hopf frobenius extension of algebras, Comm. in Algebra, 1992, 20: 1907-1915.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部