期刊文献+

一类循环码的极小距离 被引量:2

ON THE MINIMUM DISTANCE OF SOME CYCLIC CODES
下载PDF
导出
摘要 循环码的极小距离大于或等于其BCH界 .本文考虑的是极小距离等于BCH界的特殊情形 .利用一类自反循环码的事实 ,证明了使循环码的极小距离等于其BCH界的两个充分条件 ;并指出极小距离等于任意给定值、维数任意大的循环码可以构造 . It is well known that the minimum distance of a cyclic code is lower bounded by the BCH bound. This paper is concerned with the special case in which the minimum distance equals the BCH bound. By means of the fact of certain reversible cyclic codes, two sufficient conditions for the minimum distance of a cyclic code to equal its BCH bound have been found. And such a code of large enough dimension and any given minimum distance can be constructed.
作者 高莹
出处 《数学杂志》 CSCD 北大核心 2002年第2期165-168,共4页 Journal of Mathematics
基金 国家自然科学基金资助项目
关键词 循环码 极小距离 BCH界 自反多项式 自反循环码 cyclic codes minimum distance BCH bound self-reciprocal polynomial reversible cyclic codes
  • 相关文献

参考文献5

  • 1[1]J. H. Van Lint and Richard M. Wilson. On the minimum distance of cyclic codes[J]. IEEE Trans. Information Theory, 1986, 31(1): 23~40
  • 2[2]P. J. N. de Rooij and J. H. Van Lint. More on the minimum distance ofcyclic codes[J]. IEEE Trans. Information Theory, 1991, 37(1): 187~189
  • 3[3]C. L. Chen. Computer Result on the minimum distance of some binary cyclic codes[J]. IEEE Trans. Information Theory, 1970, 16(3): 359 ~ 360
  • 4[4]K. K. Tzeng. On the minimum distance of certain reversible cyclic codes[J]. IEEE Trans. Information Theory,1970, 16(5): 644 ~ 645
  • 5[5]F. J. Macwilliams and N. J. A. Sloane. Theory of error-correcting codes[M]. Amsterdam: North-Holland, 1977.

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部