摘要
讨论可测空间 (U,σ(U) )的两种不同的扩张 ,使其满足任意并 (交 )的封闭性 ,并证明二者是等价的 ,找到了利用可测空间 (U,σ(U) )的算子扩张空间 (U,σ* (U) )中的上 (下 )
Two kinds of spanning space of measurable space (U,σ(U)) are discussed so as to satisfying A t∈σ *(U)(t∈T),∪t∈TA t∈σ *(U)(∩t∈TA t∈σ *(U)). It has been proved that one was equivalent to the other. There exists a equivalence relation defined by upper (lower) approximate operator in the spanning space of measurable space (U,σ(U)).
出处
《纯粹数学与应用数学》
CSCD
2002年第1期83-85,共3页
Pure and Applied Mathematics
基金
云南省教委科研基金 ( 2 0 0 33)