摘要
本文将解流体动力弥散问题的等参数溶质质量均衡有限元法与采用同样非线性基函数的等参数里茨(Ritz)有限元法或伽辽金有限元法做以比较发现,前者具有物理意义明确,能准确反映局部质量均衡关系,计算公式简单,易于接受应用等优点,克服了线性有限元法的插值函数不能体现单元内部溶质质量守恒一般规律的缺点。
Compared with the Litz 's or Galegin/s finite-element method in the same no-linear fundament functions, this method has the following advantages: its physical meaning is definite: the part mass balance relationship can be reflected exactly; its calculation formulas are simple and easy to use.This method surmountes the disadvantages that the interpolation function of fhe linear finite-element method can not reflect the solute quality conservation inner unit.
基金
国家自然科学基金资助项目
关键词
溶质
质量守恒
有限元
基函数
Part solute quality conservation, no-linear fundament function, linear fundament function, finite-element method