期刊文献+

Cahn-Hilliard方程的拟谱逼近 被引量:4

Legendre Collocation Approximation for Cahn-Hilliard Equation
下载PDF
导出
摘要 该文讨论用 Legendre拟谱方法数值求解非线性 Cahn- Hilliard方程的 Dirichlet问题 .建立了其半离散和全离散逼近格式 ,它们保持原问题能量耗散的性质 .证明了离散解的存在唯一性 ,并给出了最佳误差估计 . In this paper, a Legendre collocation method for numerically solving Cahn Hilliard equations with Dirichlet boundary conditions is developed. We establish their semi discrete and fully discrete schemes that inherit the energy dissipstion property from the associated continuous problem. we prove existence and uniqueness of the numerical solution and derive the optimal error boun d s. we perform some numerical experiments which confirm our results.
机构地区 浙江大学数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2002年第2期270-280,共11页 Acta Mathematica Scientia
基金 浙江省自然科学基金资助项目
关键词 Cahn-Hillard方程 拟谱方法 DIRICHLET问题 Cahn Hilliard equation Legendre collocation method.
  • 相关文献

参考文献1

  • 1程晓良.求解微分方程的有限元方法,杭州大学博士后研究工作报告[M].,1998..

同被引文献16

  • 1Boling GUO and Rong YUAN (Institute of Applied Physics and Computattonal Mathematics, Beijing 100088, China, e-mail: gbl@mail. iapcm. ac. Cn.Existence of periodic solutions of the generalized Ginzburg-Landau equation with periodic boundary condition[J].Communications in Nonlinear Science and Numerical Simulation,2000,5(2):69-73. 被引量:3
  • 2向新民.带弱阻尼的非线性Schrdinger方程谱逼近的大时间性态[J].高校应用数学学报(A辑),1998,13(3):267-274. 被引量:6
  • 3刘宝平,赵璧.Fitzhugh-Nagumo神经传导方程的多重周期平面波解[J].应用数学学报,1989,12(1):13-23. 被引量:7
  • 4郑宋穆 沈玮熙.Fitz—Hugh—Nagumo方程组初边值问题的整体存在性[J].科学通报,1984,29(16):966-966.
  • 5Termam R.Infinite-dimensional dynamical systems in mechanics and physics[M].2nd ed.New York:SpringerVerlag,1997.15-80.
  • 6DUAN J, HOLMES P, TITI E S. Global existence theory for a generalized Ginzburg-Landau equation[J]. Nonlinearity,1992(5) :1 303-1 314.
  • 7GUO BOLING, CHANG QIANSHUN. Attractors and dimension for discretions of a generalized Ginzburg-Landau equation[J]. J Partial Diff Eqs,1996, 9..365-383.
  • 8BERNARDI C, MADAY Y. Polynomial interpolation results for orthogonal polynomials in Sobolev spaces [J]. J Comp Appli Math,1992,43:58-80.
  • 9郑宋穆 沈玮熙.Fitz-Hugh-Nagumo方程初边值问题的整体存在性.科学通报,1984,29(16):966-969.
  • 10TEMAM R.Infinite Dimensional Dyamical Systems in Mechanics and Physics[M].2nd Ed.New York:Springer-Verlag,1997:15-80.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部