摘要
该文讨论用 Legendre拟谱方法数值求解非线性 Cahn- Hilliard方程的 Dirichlet问题 .建立了其半离散和全离散逼近格式 ,它们保持原问题能量耗散的性质 .证明了离散解的存在唯一性 ,并给出了最佳误差估计 .
In this paper, a Legendre collocation method for numerically solving Cahn Hilliard equations with Dirichlet boundary conditions is developed. We establish their semi discrete and fully discrete schemes that inherit the energy dissipstion property from the associated continuous problem. we prove existence and uniqueness of the numerical solution and derive the optimal error boun d s. we perform some numerical experiments which confirm our results.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2002年第2期270-280,共11页
Acta Mathematica Scientia
基金
浙江省自然科学基金资助项目