期刊文献+

Galois环导出p元序列中元素组的分布及其渐近均匀性

Distribution of r-grams in p-ary sequences derived from sequences over Galois rings and the asymptotical uniformity
下载PDF
导出
摘要 r-样式的分布是有限域上序列伪随机性的一个重要方面。就此问题本文对域R/pR上一类序列作了考察,这类序列得自于Galois环R=GR(ptn, pn)上其特征多项式f (x)在模p下本原的线性递归序列(包括极大长序列)的p-adic展开,即所谓Galois环导出p元序列。我们得到了这种序列上独立r-样式分布的一个估计,作为推论,r-样式的分布关于f (x)的次数是渐近均匀的。 Distribution of r-grams is an important aspect of pseudo-randomness for sequences over a finite field. In this paper this problem is investigated for sequences over the field R/pR derived from the p-adic expansion of some linear recursion sequences (including maximal length sequences) over the Galois ring R=GR (ptn, pn), whose characteristic polynomial f (x) is primitive modulo p. An upper bound of the deviation to uniform distribution is obtained. As a consequence, the distribution of r-grams on the highest level sequence is shown to be asymptotically uniform with respect to the degree of f (x).
出处 《通信学报》 EI CSCD 北大核心 2002年第5期39-44,共6页 Journal on Communications
基金 国家973基金资助项目(G1999035804) 国家自然科学基金资助项目(60173016)
关键词 p元序列 元素组 渐近均匀性 GALOIS环 r-样式分布 最高权位序列 密码学 Galois rings distribution of elements r-grams highest level sequences
  • 相关文献

参考文献7

  • 1[1]McDonald B R.Finite Rings with Identity[M].New York:MARCEL DEKKER INC,1974.
  • 2[2]Nechaev A A.Kerdock's code in cyclic form[J].Diskret.Mat,1989,1 (4):123-139.
  • 3[3]Dai Z D,Beth T,Gollman D.Lower bounds for the linear complexity of sequences over residue rings[A].Advances in Cryptology,Eurocrypt'90,Lncs[C].Berlin:Springer-Verlag,1991,473:189-195.
  • 4[4]Huang M Q,Dai Z D.Projective maps of linear recurring sequences with maximal p-adic periods[J].Fibonacci Quart,1992,30(2):139-143.
  • 5QI Wenfeng and ZHOU Jinjun Department of Applied Mathmatics, Zhengzhou Information Engineering Institute, Zhengzhou 450002, China.Distribution of 0 and 1 in the highest level of primitivesequences over Z/(2~e) (Ⅱ)[J].Chinese Science Bulletin,1998,43(8):633-635. 被引量:6
  • 6[6]Dai Z D.Binary sequences derived from ML-sequences over rings I: periods and minimal polynomials[J].Journal of Cryptology,1992,5(3):193-207.
  • 7[7]Kamlovskii O V,Kuz'min A S.Distribution of elements on cycles of linear recurrent sequences over Galois rings[J].Communications of the Moscow Mathematical Society,1998,53(2):392-393.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部