摘要
基于小波包对信号的高分辨率分解和重构能力 ,把信号在不同频段上进行分解 ,提取各分量故障信号的特征 ,应用BP神经网络进行故障模式识别 ,并将这种方法用于齿轮故障模式识别 。
In this paper,the signals between different frequencies were decomposed and reconstructed in order to draw the character of the fault signal based on the ability of wavelet packet decomposition and reconstruction.Use BP neural network to identity fault model.Take advantage of this approach to identify the gear fault model and get better result.
出处
《煤矿机械》
北大核心
2002年第5期18-20,共3页
Coal Mine Machinery
关键词
小波包
预处理
神经网络
故障模式识别
wavelet packet
decomposition and reconstruction
BP neural network
fault model identification