摘要
将有多个参数的模型(微分的、代数的、超越的、线性的或非线性的、动态的或静态的)纳入仿真运行,通过反复寻求相邻三次仿真运行的误差曲线的极小值,使模型参数得到修正,并逐步达到最佳拟合。对三个不同类型问题的应用,说明了本方法的有效性和通用性。
The models with more parameters (differential, algebraic,hyper, linear or non-linear, dynamic or static) were brought into simulation run. The procedure is to iteratively seek the minimum value of error curve formed by three sequential simulation runs and to adjust the model parameters so as to reach the optimal fitting gradually. Applying the method to three different types of problems indicates the effectiveness and general purpose of the method.
出处
《西北农业大学学报》
CSCD
1991年第3期75-79,共5页
Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition)
关键词
数学模型
数字仿真
参数
估计
Mathematical model, digital simulation, optimization , parameter estimation