期刊文献+

一种基于字符HMM模型级联的手写体西文单词识别方法 被引量:5

A METHOD FOR HANDWRITTEN WORD RECOGNITION BASED ON CHARACTER HMM CASCADE CONNECTION
下载PDF
导出
摘要 提出了一种识别西文单词的级联HMM方法,在字符HMM模型基础上按照统计语法将各模型依概率连接.它扩展了HMM的模式描述方式,允许在级联模型上表征状态的跳跃、转移和驻留等.通过共享字符模型来描述级联状态转移概率,可以更加可靠地刻画手写体单词的行为特点.采用面向级联的Viterbi算法,在完整的单词采样序列输入后直接识别,无需做字符的分割和标注,从而避免了在字典中为每个单词建立模型而导致的识别不同步问题.用EW-1单词样本库进行试验,级联模型法的第1候选识别率为89.26%,带有连字模型的HMM法的第1候选识别率为82.34%,降低错误识别率达39.18%. In this paper, a cascade connection hidden Markov model (CCHMM) method is proposed. This model allows state transition, skip and duration, and extends the way of HMM pattern description of handwritten English words. According to the statistic syntax, it may depict the behavior of handwriting curve more reliably, while character segmenting and labeling are unneeded. The Viterbi algorithm for the cascade connection model may be applied after the whole sample series of a word is input. Compared to the method of creating models for each word in lexicon, this method could avoid the problem of recognition asynchronous. Experiments on EW-1 database shows that CCHMM approach could obtain 89. 26% recognition rate for the first candidate. The proposed approach cuts 39. 18% error rate of ligature model method, whose first candidate is 82. 34%.
出处 《计算机研究与发展》 EI CSCD 北大核心 2002年第6期712-717,共6页 Journal of Computer Research and Development
基金 本课题得到哈尔滨工业大学科研基金资助(HIT.2001.49)
关键词 字符 HMM模型级联 西文单词识别 手写体单词识别 模型间状态转移概率 handwritten word recognition, cascade connection hidden Markov model, inter-model state transition probability
  • 相关文献

参考文献1

二级参考文献4

  • 1Der Sheng Lin,IEEE Trans Systems,Man and Cybernetics.B,1997年,27卷,6期,999页
  • 2Mou Yenchen,IEEE Trans Pattern Analysis and Machine Intelligence,1994年,16卷,5期,481页
  • 3Liu Jiafeng,哈尔滨工业大学学报,1994年,1卷,1期,51页
  • 4唐降龙,孙广玲,刘家锋,容军.一种笔段序列匹配联机汉字识别方法[J].计算机研究与发展,1999,36(12):1472-1476. 被引量:4

共引文献4

同被引文献40

  • 1邹明福,钮兴昱,刘昌平,白洪亮.联机手写英文识别[J].计算机研究与发展,2006,43(1):138-144. 被引量:5
  • 2[3]A Komai.Experimental HMM-based postal OCR system.Int' l Conf on Acoustics,Speech,Signal Processing,Munich,Germany,1997.
  • 3[4]JUNG K C,YOON S M,KIM H J.Continuous HMM applied to quantization of on-line Korean character spaces[J].Pattern Recognition Letters,2000,21:303-310.
  • 4[2]Trier I D,Jain A K,taxt T.Feature extraction methods for character recognition-a survery[J].Pattern Recognition,1996,29 (4):641-662.
  • 5Nadir Farah, Labiba Souici, and Mokhtar Sellami, "Arabic Word Recognition by Classifiers and Context," Computer Science Department, Annada University, 2005,20 (8) ,402 - 410.
  • 6Tang Xianglong, Shu W enhao, L iu J iafeng et al. The system of online handwritten Chinese character recognition based on association. Information and Control, 1991, 20 (6) : 16 - 20.
  • 7Claus Bahlmann and Hans Burkhardt, "The Writer Independent Online Handwrinting Recognition System frog on hand and Cluster Generative Statistieal Dynamic Time Warping," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004 , 26 ( 3 ) , 75 - 86.
  • 8Wang X, Zhang K, Sun L, et al. Short interfering RNA directed against Slug blocks tumor growth, metastasis formation, and vascular leakage in bladder cancer [J]. Med 0ncol,2010,29 : 119.
  • 9Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis[ J]. Annu. Rev Cell Biol, 1993,9 : 541-573.
  • 10Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence [ J ]. Cancer Cell, 2008,14( 1 ) :79-89.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部