期刊文献+

分组样本下Bayes网络条件概率的学习算法 被引量:8

Learning Algorithms of Bayesian-Network Conditional Probabilities from Grouped Sample
下载PDF
导出
摘要 本文应用带盘的 Bayes网络作为分析模型 ,对于学习实例数据库为分组样本的关于各组样本私有条件概率的学习算法进行讨论 ,构建出两层学习结构 :第一层针对各组私有条件概率分布 Θij(l) s的学习 ;第二层针对是各组公有条件概率分布Θij的学习 .算法在在综合公有后验条件概率分布和本组学习实例数据的基础上 ,实现对各组私有条件概率分布的学习 ,并可以通过调整组间差异性信度 In this paper, we applied Bayesian network with plates as analysis model to propose a learning algorithm that can derive private conditional probabilities from grouped sample. We have exploited a two level learning architecture: at first level, we have a set of parameters that express private conditional probabilities, i.e. the Θ ij (l)s; at the second level, we have a set of parameters that express popular conditional probabilities, i.e. the vectorΘ ij . The overall result is that the posterior private conditional probabilities are a compromise between pecific information and the posterior distribution of the population, allowing each posterior private conditional probability to borrow value from all the experience contained in the database. The degree of compromise can be modulated by tuning the parameterβ.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第6期687-689,共3页 Journal of Chinese Computer Systems
关键词 分组样本 BAYES网络 条件概率 学习算法 专家系统 grouped sample private conditional probability prior distribution posterior distribution
  • 相关文献

参考文献2

二级参考文献25

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

共引文献104

同被引文献55

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部