摘要
提出一种对于非线性系统遗传算法的神经网络控制模型 ,并给出了新的神经网络训练模型 .该模型的主要优点是 ,优化网络连接权重 。
In this thesis,we present a genetic algorithm neuron control scheme for nonlinear systems.Our method is different from those using supervised learning algorithms,such as the backpropagation(BP) algorithm,that needs training information in each step.The contributions of this thesis are the new approach to constructing neural network architecture and its training.These improvements include: Optimizing connection weights and Optimizing network topology.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2002年第2期116-122,共7页
Journal of Inner Mongolia Normal University(Natural Science Edition)