期刊文献+

矩阵非线性薛定谔方程初值问题解的爆破

THE BLOWING UP OF SOLUTIONS TO THE INITIAL VALUE PROBLEM FOR MATRIX NONLINEAR SCHRDINGER EQUATIONS
下载PDF
导出
摘要 考虑矩阵非线性薛定谔方程初值问题解的局部存在性及解的爆破问题 ,并且给出了在 H1( Rn)中方程 Bt=i(ΔB+ 2 BB* B) ( n≥ 2 )的解于有限时间内爆破的充分条件 .如果爆破现象出现 ,那么解的某些Lp 范数也在此有限时间内爆破 ,从而可将一般具有形式 iut=-Δu-| u| p-1u( p=3) This paper considers the local existence and the blowing up of solutions to the Cauchy problem (IVP) for matrix nonlinear Schrdinger equations of the form B t=i(ΔB+2BB *B) in H 1(R n) with n≥2. With this kind of nonlinear term, several sufficient conditions for the blowing up of solutions in H 1(R n) are obtained, and some other L pnorm of a solution also blow up. Therefore, the well-known result for ordinary nonlinear Schrdinger equations with the form iu t=-Δu- |u| p-1u(p=3) can be generalized to matrix nonlinear Schrdinger equations.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2002年第2期11-16,共6页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 (10 1710 88)
关键词 矩阵非线性薛定谔方程 初值问题 局部存在性 爆破解 古典解 L^p-范数估计 matrix nonlinear Schrdinger equations initial value problem local existence blow up solution
  • 相关文献

参考文献6

  • 1[1]FORDY A P, KULISH P P. Nonlinear Schrdinger equations and simple algebras [J]. Comm Math Phys, 1983, 80: 427~433
  • 2[2]LIU Z H, PEDERSEN M. Matrix nonlinear Schrdinger equation in dimension 2 [J]. J Math Anal & Appl, 2001, 262(1): 388~399
  • 3[3]WEINSTEIN M I. Nonlinear Schrdinger equations and sharp interpolation estimates [J]. Comm Math Phys, 1983, 87: 567~576
  • 4[4]GLASSEY R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrdinger equation [J]. J Math Phys, 1977, 18(9): 1794~1797
  • 5[5]FADDEEV L, TAKHTAJAN L A. Hamiltonian methods in the theory of solitons [M]. Berlin-Heideberg-New York: Springer-Verlag, 1987
  • 6[6]NIRENBERG L. On elliptic partial differential equations [J]. Ann Scu Norm Sup Pisa, 1959, 13: 115~162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部