摘要
To test the theory of dissociative electron transfer, a simple model describing the kinetics of electron transfer bond breaking reactions was used. The Hamiltonian of the system was given. The homogeneous and heterogeneous kinetic data fit reasonably well with an activation driving force relationship derived from the Marcus quadratic theory. In the heterogeneous case, there is a good agreement between the theoretical calculation and the experimental result, while in the homogeneous case, a good agreement is only observed for the tertiary halides. This is due to the stability of tertiary radical resulting from the sterical effect.
To test the theory of dissociative electron transfer, a simple model describing the kinetics of electron transfer bond breaking reactions was used. The Hamiltonian of the system was given. The homogeneous and heterogeneous kinetic data fit reasonably well with an activation driving force relationship derived from the Marcus quadratic theory. In the heterogeneous case, there is a good agreement between the theoretical calculation and the experimental result, while in the homogeneous case, a good agreement is only observed for the tertiary halides. This is due to the stability of tertiary radical resulting from the sterical effect.
基金
theNaturalScienceFoundationofShandongProvince (No .Y99B0 1)
theNationalKeyLaboratoryFoundationofCrystalMaterial
theNationalNaturalScienceFoundationofChina (No.2 96 730 5 )