期刊文献+

用户浏览偏爱模式挖掘算法的研究 被引量:3

Research on the Algorithm of Mining Preferred Navigation Patterns
下载PDF
导出
摘要 针对当前的挖掘算法只是简单地把频繁访问路径作为用户浏览的兴趣路径的问题,充分地考虑了用户在页面上的浏览时间和在路径选择上表现出来的浏览偏爱,提出了基于远程代理数据收集的浏览偏爱模式挖掘算法.该算法先利用客户端的远程代理收集用户浏览信息,然后划分成用户事务,最后利用一个递归过程找出用户浏览偏爱模式.实验证明:该算法比当前的频繁访问路径算法在用户浏览兴趣度量上更准确. The traditional algorithms simply regard frequent access paths as interesting navigation paths. It's not accurate. Considering user navigation interest by page navigating time and path choosing patterns, the concept of navigation preference and the algorithm for mining preferred navigation patterns are proposed. User navigation information is first collected from the remote agent and then is divided into user session. Then, the preferred navigation paths are mined by a recursion procedure. Experiments show our algorithm is more accurate than the other traditional algorithms of frequent access paths in measuring user navigation interests.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2002年第4期369-372,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(80173058) 国家"八六三"计划资助项目(863-306-QN2000-5).
关键词 用户 浏览偏爱模式 挖掘算法 电子商务 网络 Algorithms Critical path analysis
  • 相关文献

参考文献5

  • 1[1]Chen M S,Park J S,Yu P S.Efficient data mining for path traversal patterns [J].IEEE Trans on Knowledge and Data Engineering,1998,10(2):209~221.
  • 2[2]Myra S,Lukas F.A data miner analyzing the navigational behaviour of web users [EB/OL].http:∥www.wiwi.hu-berlin.de/~myra/w-acai99.ps.gz,19990716/20010728.
  • 3[3]Ackerman M,Billsus D,Gaffney S.Learning probabilistic user profiles:applications to finding interesting web sites,notifying users of relevant changes to web pages,and locating crant opportunities [J].AI Magazine,1997,18(2):47~56.
  • 4[4]Pazzani M,Billsus D.Learning and revising user profiles:the identification of interesting web sites [J].Machine Learning,1997,27(1):313~331.
  • 5[5]Yun C H,Chen M S.Using patternjoin and purchasecombination for mining web transaction patterns in an electronic commerce environment[EB/OL].http:∥www.ee.ntu.edu.tw/mschen/papers/pakdd00.pdf,2000-08-13/2001-07-28.

同被引文献14

  • 1LIEBEMAN H L. An agent that assists Web browsing[ C ]//Proc of International Joint Conference on Artificial Intelligence. Montreal: [ s. n. ] ,1995:924-929.
  • 2MYRA S, LUKAS F. A data miner analyzing the navigational behavior of Web users [ EB/OL ]. (2001-09-17 ). http ://www. wiwi. hu_berlin. de/myra/w_acaii01, aspx.
  • 3GODOY D, AMANDI A. Modeling user interests by conceptual clustering[ J]. Information Systems ,2006 ;31 (4,5) :247-255.
  • 4BRUSILOVSKY P. Predictive statistical models for user modeling [ J]. User Modeling and User-adapted Interaction ,2001,11 ( 1 ) : 5-18.
  • 5CHEN M S,PARK J S,YU P S. Efficient data mining for path traversal patterns[ J]. IEEE Trans on Knowledge and Data Engineering,1998,10(2) :209-221.
  • 6Yan T W,Jacobsen M,Garcia-Molina H,et al.From user access patterns to dynamic hypertext linking[J].Proceedings of the Fifth International World Wide Web Conference on Computer Networks and ISDN Systems,1996,28(7-11):1007-1014.
  • 7Zukerman I,Albrecht D W,Nicholson A E.Predicting users'requests on the WWW[A].Proceedings of the Seventh International Conference on User Modeling (UM-99)[C].1999.275-284.
  • 8Pierrakos D,Paliouras G,Papatheodorou C,et al.Web usage mining as a tool for personalization:A survey[C].User Modeling and User-Adapted Interaction,2003.13(4):311-372.
  • 9Fu Y,Sandhu K,Shih M Y.Clustering of web users based on access patterns[A].Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].San Diego,USA,1999.
  • 10Zhang T,Ramakrishnan R,Livny M.BIRCH:An efficient data clustering method for very large databases[A].Proceedings ACM-SIGMOD International Conference in Management of Data[C].1996.103-114.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部