期刊文献+

模糊层次拓扑空间理论(Ⅰ) 被引量:3

The Theory of Fuzzy Stratiform Topological Spaces (I)
下载PDF
导出
摘要 在模糊拓扑空间中,有些集合本身并不是闭集,但在某些层次上它却表现出闭集的特性,这就是所谓的层次闭集.层次闭集可以形成一种拓扑,称之为模糊层次拓扑.这种拓扑已在模糊拓扑学的研究中发挥了较大的作用,并逐渐形成了一种理论,谓之模糊层次拓扑空间理论.本文综述了该理论的基本框架,并分析了它的发展趋势. The paper is continuation of [1]. For given fuzzy lattice L and its molecular a,in L-fuzzy topological space,it is defined that a stratiform closure operator, so-called GFa-closure operator,it is intorduced that a stratiform closed set,so-called GFa- closed set. The basic properties of GFa- closure operator and GFa- closed sets are discussed. It is point out that GFa- closure operator is a generalization for Rodabaugh's a- closure operator. The decomposition theorem has been presented for the closure of L-fuzzy set.
作者 孟广武 孟晗
出处 《聊城师院学报(自然科学版)》 2002年第1期1-4,10,共5页 Journal of Liaocheng Teachers University(Natural Science Edition)
基金 山东省自然科学基金资助课题(Y98A05008)
关键词 模糊层次拓扑空间理论 模糊拓扑学 层次闭集 连续映射 仿紧性 fuzzy topology,GFα- closure operator,GFα- closed set,fuzzy lattice
  • 相关文献

参考文献3

二级参考文献4

共引文献18

同被引文献12

  • 1方锦暄,任百林.L—模糊拓扑空间的弱分离公理[J].南京师大学报(自然科学版),1994,17(4):1-8. 被引量:5
  • 2李尧龙.L-fuzzy相对T_1与相对T_2分离性[J].江西师范大学学报(自然科学版),2005,29(5):420-423. 被引量:2
  • 3姜翠美,方进明.L-拓扑空间的次分离性公理[J].模糊系统与数学,2007,21(1):12-18. 被引量:6
  • 4[2]S.E. Rodabaugh. The Hausdorff separation axiom for fuzzy topological spaces [J]. Topology Appl. 1980,11:319~334.
  • 5[2]SHI Fu-gui.A new definition of fuzzy compactness[J].Fuzzy Sets and Systems,2007,158:1486~1495.
  • 6[3]SHI Fu-gui.A new form of fuzzy a-compactness[J],Mathemematica Bohemica,2006,131:15~18.
  • 7[5]CHANG C L.Fuzzy topological spaces[J].J.Math.Anal.Appl.,1968(24):182~190.
  • 8[6]RODABAUGH S E.Powerset operator foundations for poslat fuzzy set theories and topologies[J].Mathematics of Fuzzy Sets,1999,13:91~116.
  • 9[7]RODABAUGH S E.Point-set lattice-theoretic topology[J].Fuzzy Sets and Systems,1991,(40)297~345.
  • 10[8]GANTNER T E,STEINLAGE R C,WARREN R H.Compactness in fuzzy topological spaces[J].J.Math.Anal.Appl.,1978,(62):547~562.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部