期刊文献+

一种基于矢量量化的音频场景分析方法 被引量:2

An Audio Scene Analysis Method Based on Vector Quantization
下载PDF
导出
摘要 基于音频的场景分析技术对机器自动感知环境特征,提高自动化程度等具有重要的意义。考虑到人耳的听觉特性,采用反映人类听觉特性的Mel倒谱系数MFCC(Melfrequencycep-stralcoefficient)作为音频信号特征,提出了一种用矢量量化来进行音频场景分析的方法。 The techniques of audio scene analysis are very important for the automatic awareness of background events and improving the automation.In this paper,the auditory charac-ters of human being are considering,thus,the MFCC(Mel frequency cepstral coefficient),which represents the auditory characters,is adopted as the feature of audio signal,and a method of au-dio scene analysis based on vector quantization is proposed.
出处 《电声技术》 北大核心 2002年第3期8-10,共3页 Audio Engineering
基金 哈尔滨工业大学跨学科交叉研究基金(HIT.MD.200001)资助
关键词 矢量量化 音频信号 场景分析 语音信号处理 audio signal scene analysis vector quantization Mel frequency cepstral coef-ficient
  • 相关文献

参考文献8

  • 1J.Saunders. Real-time Discriminative of Broadcast Speech/Music. Proceedings of ICASSP96, 1996, 993-996.
  • 2E. Scheirer, M. Slaney. Construction and Evaluation of a Robust Multifeature Speech/Music Discriminator. ProCeedings of ICASSP97, 1997.
  • 3B. Clarkson, A. Pentland. Extracting Context From Environmental Audio. Proceedings of 1998 Wearable ComPuter Symposium, 1998, 154-155.
  • 4Z. Liu, J. Huang, Y. Wang. Audio Feature Extraction and Analysis for Scene Classification. Proceedings of IEEE Ist Multimedia Workshop, 1997.
  • 5T. Zhang, C. Kuo. Audio Content Analysis for Online Audiovisual Data Segmentation and Classification. IEEE Trans. on Speech and Audio Processing, 2001, 9(4):441-457.
  • 6J. Picone. Signal Modeling Techniques in Speech Recognition. Proceedings of IEEE, 1993, 81(9):1215-1247.
  • 7S. Davis, P. Mermelstein. Comparison of Parameter Representations for Monosyllabic Word Recognition. IEEE Trans. On Acoustics, Speech and Signal Processing,1980, 28(2):357-366.
  • 8Y. Linde, A. Buzo, R. Gray. An Algorithm for Vector quantizer Design. IEEE Trans. On Communications. 1980,28(1):84-95.

同被引文献17

  • 1Baum L E.An inequality and associated maximization technique in statistical estimation for probabilistic functions of markov process[J].Inequalities,1972,3:1-8.
  • 2Baum L E,Egon J A.An inequality with applications to statistical estimation for probabilistic functions of a markov process and to a model for ecology[J].Bull Amer Math Soc,1967,73:360-363.
  • 3Jelinek F.Continuous speech recognition by statistical methods[J].Proc of the IEEE,1976,64(4):532-536.
  • 4Rabiner L R.A tutorial on hidden markov models and selected applications in speech recognition[J].Proc of the IEEE,1989,77(2):257-285.
  • 5Rabiner L R,Juang B H.fundamentals of speech recognition[M].New Jersey:Prentice Hall PTR,1993:321-371.
  • 6Smith W S.The scientist and engineer’s guide to digital signal processing[M].2nd ed.California:California Technical Publishing,1999:87-260.
  • 7Rabiner L R,Levinson S E,Sondhi M M.On the application of vector quantization and hidden Markov models to speaker independent,isolated word recognition[J].Bell System Technical Journal,1983,62(4):1075-1105.
  • 8邵强,冯长建,管丽娜,邵诚.混合密度连续HMM在旋转机械启动过程故障诊断中的应用[J].机械科学与技术,2009,28(11):1439-1443. 被引量:2
  • 9竺乐庆,王鸿斌,张真.基于Mel倒谱系数和矢量量化的昆虫声音自动鉴别[J].昆虫学报,2010,53(8):901-907. 被引量:9
  • 10肖明,贾振红.基于轮廓特征的HMM手写数字识别[J].计算机工程与应用,2010,46(33):172-174. 被引量:10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部