期刊文献+

非高斯分布噪声下诱发电位潜伏期变化自适应检测 被引量:3

Detection of adaptive latency change of evoked potentials under Gaussian noise conditions
下载PDF
导出
摘要 传统的高斯分布白噪声的模型不能很好地描述 EP信号中脑电图 (EEG)和其他噪声的特性 .因此 ,根据α稳定分布噪声理论和 EP信号中噪声的非高斯特性 ,提出了一种基于最小分数低阶矩的自适应诱发电位潜伏期估计方法 .这种方法既可以应用于高斯噪声环境 ,又在低阶α稳定分布噪声 (一类典型的非高斯噪声 )环境下具有良好的韧性 ,是一种可靠的检测EP信号潜伏期变化的方法 .分析和实验表明 ,α稳定分布噪声模型是一种适合于描述带噪EP信号统计特性的随机噪声模型 ,所得到的 EP信号潜伏期变化的检测结果 。 Traditional evoked potential (EP) analyses are developed under the condition that the background noises are Gaussian distribution. However, Gaussian distribution doesn′t describe the EP signals and the contaminated noises (such as EEG and other noises) properly. Based on the α \|stable distribution theory and the properties of EP signals and noises, this paper proposes a latency change detection and estimation algorithm under α \|stable noise conditions, a generalization of Gaussian noise assumption. The simulation and the analysis show that the α \|stable model fits the noises found in the impact acceleration experiment under study better than the Gaussian model. The proposed algorithm is more robust under both Gaussian and lower order α \|stable noise conditions.
出处 《大连理工大学学报》 CAS CSCD 北大核心 2002年第3期371-375,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目 (3 0 170 2 5 9 60 172 0 72 ) 辽宁省科学技术基金资助项目 (2 0 0 110 10 5 7)
关键词 非高斯分布噪声 诱发电位 潜伏期 自适应检测 latency adaptive filtering/non\|Gaussian α \|stable noise evoked potentials
  • 相关文献

参考文献11

  • 1[1]KONG X, THAKOR N V. Adaptive estimation of latency changes in evoked potentials[J]. IEEE Trans on Biomedical Eng, 1996,43(2):189-197.
  • 2[2]VAZ C V, THAKOR N V. Adaptive Fourier estimation of time varying evoked potentials[J]. IEEE Trans on Biomedical Eng, 1989,36(4):448-455.
  • 3[3]KONG X, QIU T. Latency change estimation for evoked potentials via frequency selective adaptive phase spectrum analyzer[J]. IEEE Trans on Biomedical Eng, 1999, 46(8):1004-1012.
  • 4[4]GUPTA L,MOLFESE D L. Nonlinear alignment and averaging for estimating the evoked potential[J]. IEEE Trans on Biomedical Eng,1996, 43(4):341-347.
  • 5[5]HAZARIKA N, TSOI A C, SERGEJEW A A . Nonlinear consideration in EEG signal classification[J]. IEEE Trans on Signal Processing, 1998, 45(4):829-836.
  • 6[6]MA X , NIKIAS C L . Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics[J]. IEEE Trans on Signal Processing, 1996,44(11):2669-2687.
  • 7[7]NIKIAS C L , SHAO M. Signal Processing with Alpha-Stable Distributions and Applications[M]. New York: Wiley, 1995.
  • 8[8]MATSON D, WEISS M. Evoked potential analyss of impact acceleration experiments[A]. Proceedings of AGARD Conference[C]. France: Neuilly Sur Seine, 1988. 1-13.
  • 9[9]KONG X, QIU T . Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time delay estimation[J]. IEEE Trans on Biomedical Eng, 1999, 46(8):994-1003.
  • 10[10]ETTER D M, STEARN S D. Adaptive estimation of time delay in sampled system[J]. IEEE Trans on Acoustics, Speech, Signal Processing, 1981, 29(3):582-587.

同被引文献20

  • 1邱伟,徐秉铮,陈和晏.时序自适应滤波技术用于听觉诱发电位的跟踪[J].华南理工大学学报(自然科学版),1996,24(4):91-95. 被引量:2
  • 2张金凤,邱天爽.分数低阶α稳定分布下DLMP算法的收敛特性分析[J].电子学报,2005,33(1):74-77. 被引量:1
  • 3Carlile S, Bascom DA, Paterson DJ. The effect of acute hypoxia on the latency of the human auditory brainstem evoked response[J]. Acta-Oto-Laryngologica, 1992,11 (2) :939 - 945.
  • 4Kong X, Qiu T. Adaptive estimation of latency change in evoked potentials by direct least mean p-norm time-delay estimation[J]. IEEE Transactions on Biomedical Engineering. 1999,46(8) :994 - 1003.
  • 5Kong X, Qiu T. Latency change estimation for evoked potentials: a comparison of algorithms [J]. Medical & Biological Engineering & Computing. 2001,39(2) :208 - 223.
  • 6Kong X,Thakor NV.Adaptive estimation of latency changes in evoked potentials[J]. IEEE Transactions on Biomedical Engineering. 1996,43(2) : 189 - 197.
  • 7Nikias CL, Shao M. Signal processing with alpha-stable distributions and applications[ M] .New York,John wiley & Sons Inc, 1995.
  • 8Etter DM, Steams SD. Adaptive estimation of time delays in sampled data systems[J] .IEEE Trans on Acoustics,Speech, Signal Processing.1981,29(3) :582 -587.
  • 9Ma X,Nikias CL.Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics [J]. IEEE Transactions on Signal Processing.1996,44(11):2669 - 2687.
  • 10Knapp CH,Carter GC.The generalized correlation forestimation of time delay[J].IEEE Trans on ASSP,1976,24(3):320-327.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部