摘要
建立了动物体内疟原虫数量变化的数学模型。根据耗散结构理论的研究方法 ,发现其数量变化显示两级分叉结构 :第一级 (实 )分叉产生轻微疟疾病稳定态 ;第二级 (Hopf)分叉产生的Hopf极限环代表了疟疾病周期性发作状态。并给出了疟疾病发作周期公式。
The maths model for population variation of malaria parasites in a animal's body is presented. According to study procedure of the theory for dissipative structure, the bifurcation structure of two orders for the population variation is found. The first order (real bifurcation) produces the weakish and stable state of malaria and the second order (Hopf bifurcation) produces Hopf limit c ycle which corresponds to the malarious periodic onsets. The study methods used in this paper is valuable for exploring complexity in biophysics.
出处
《华东船舶工业学院学报》
2002年第2期41-46,共6页
Journal of East China Shipbuilding Institute(Natural Science Edition)