期刊文献+

半导体量子点最低导带态的量子限制效应

Quantum confinement effects of the lowest conduction band states in semiconductor quantum dots
下载PDF
导出
摘要 采用最新计算方法和半导体体材料传统量子计算结果,系统研究了14种半导体(Si,Ge,Sn,AlSb,GaP,GaAs,GaSb,InP,InAs,InSb,ZnS,ZnSe,ZnTe,CdTe)的立方量子点,得到了最低导带态的量子限制效应结果,我们把量子点对尺寸的依赖关系分为三类并详细讨论了它们的差别。 By using newly calculating method and classical calculation results of quantum theory on semiconductor material,the cubic quantum dots(Si ,Ge ,Sn,AlSb,GaP,GaAs ,GaSb,InP,InAs ,InSb,ZnS,ZnSe,ZnTe,CdTe)are studied systematically.Then,we got quantum confinement effects of the lowest conduction band states in semiconductor quantum dots of four-teen semiconductor.According to their different behaviors with the size of quantum dots,we clas-sified these dots as three categories and discussed their differences in details.
出处 《微纳电子技术》 CAS 2002年第6期21-27,共7页 Micronanoelectronic Technology
关键词 半导体 量子点 量子限制效应 能带结构 quantum dot quantum confinement effects energy band structure
  • 相关文献

参考文献14

  • 1[1]MarkReed A. Scientific American. 1993, 118~123.
  • 2[2]Grandemann M et al. Phys Rev Lett, 1995, 74: 4043.
  • 3[3]Heine V, Ehrenreich H, Seitz F et al. Solid State Physics,v24, Academic Press, New York (1970) .
  • 4[4]Ames J, Chelikowsky R, Marvin L Cohen. Phys Rev, 1976,14 (2): 556~582.
  • 5[5]Li M F. Semiconductor Physics, Academic Press (1995)
  • 6[6]Callaway J. Quantum theory of the solid state, New York, Academic Press (1976) .
  • 7[7]Cohen M L, Bergstresser T K. Phys Rew, 1965, 141 (2):787~797.
  • 8[8]Huang K. Solid State Physics, Academic Press (1988) .
  • 9[9]Palivisatos A. Science, 1996, 271, 933.
  • 10[10]Kayanuma Y. Solid State Comu, 1986, 59: 405.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部