期刊文献+

熵正则化磁共振成像理论及迭代算法 被引量:1

ON ITERATIVE METHOD FOR ENTROPY REGULARIZED RECONSTRUCTION IN MRI
下载PDF
导出
摘要 实际的磁共振成像系统 ,通常仅能收集有限的频谱数据 ,傅立叶变换法重建的图像存在Gibbs伪影 ,且分辨率有限。我们提出的熵正则化磁共振成像方法是考虑与原始频谱数据一致性的条件下 ,熵极大化而获得的结果。重建的图像具有无限的分辨率 ,降低Gibbs伪影及信号中的噪声。本算法的稳定性优于模型最大熵法[12 ] 。 In magnetic resonance imaging, only a limited amount of sampled data could be collected. The limitation of available experimental data led to the infamous problem of diffraction which manifested itself by causing ringing in the image. This ringing was due to interference phenomena in optics and was known as the Gibbs phenomenon in engineering. Here, an iterative entropy regularization algorithm for MRI was developed, which produced a super redsolution and optimal signal to noise solution to the problem of reconstructing a source from partial Fourier transform data. This method was capable, in principle, of unlimited resolution and was robust with respect to Gaussian white noise perturbation. Comparisons of the IMER method with the conventional Fourier transform method was carried out with the real magnetic resonance data to illustrate the proposed method.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2002年第3期193-198,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金 (60 0 72 0 2 4)资助项目 浙江省自然科学基金 (6990 11)资助项目
关键词 迭代算法 熵优化 正则化 磁共振成像 Gibbs伪影 Iterative method Entropy optimization Magnetic resonance imaging
  • 相关文献

参考文献1

同被引文献8

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部