期刊文献+

有界噪声参激下Duffing振子混沌运动的解析方法

ANALYTIC METHODS FOR THE CHAOTIC MOTION OF DUFFING OSCILLATOR UNDER PARAMETRIC EXCITATION OF BOUNDED NOISE
下载PDF
导出
摘要 研究有界噪声参激下Duffing振子出现混沌运动的可能性。推导了随机Melnikov过程 ,由广义过程在均方意义上出现简单零点给出了可能出现混沌的临界激励幅值 ,发现在噪声强度大于一定值后 。 The possibility for onset of chaotic motion in the Duffing oscillator under parametric excitation of bounded noise is studied. The stochastic Melnikov process is derived and the critical value of excitation amplitude for the onset of chaotic motion is obtained based on the stochastic Melnikov process having simple zero in the mean square sense. It is found that the critical values increase as the intensity of noise increases for larger value of noise intensity.
作者 葛晓明
出处 《苏州大学学报(工科版)》 CAS 2002年第2期57-59,共3页 Journal of Soochow University Engineering Science Edition (Bimonthly)
基金 建设部科研基金资助项目 (0 1- 2 - 2 0 )
关键词 有界噪声 DUFFING振子 解析方法 混沌运动 噪声强度 bounded noise stochastic Melnikov process chaos
  • 相关文献

参考文献5

  • 1[1]J Guckenheiner, P Holmes. Nonlinear oscillators, dynamical systems, and bifurcations of vector fields.NewYork[J].Springer-Verlag, 1983.
  • 2[2]S T Ariaratnam, W C Xie, E R Vrscay. Chaotic motion under parametric excitation[J]. Dynamics and Stability of Systems, 1989; 4 (2): 111-130.
  • 3[3]W C Xie. Effect of noise on chaotic motion of buckled column under periodic excitation[J]. Nonlinear and Stochastic Dynamics, ASME, 1994; AMD-192 (DE-73):215-225.
  • 4[4]H Lin, S C S Yim. Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors. Journal of Applied Mechanics[J], ASME, 1996; 63:509-516.
  • 5[5]Y K Lin, Q C Li, T C Su. Application of a new wind turbulence model in predicting motion stability of wind-excited long-span bridges[J]. Wind Engineering and Industrial Aerodynamics, 1993; 49: 507-516.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部