期刊文献+

基于强化学习的多机器人编队方法研究 被引量:4

Research on Multi-agent Team Formation Based on Reinforcement Learning
下载PDF
导出
摘要 介绍了国内外关于强化学习的研究现状,对应用Q-学习和神经网络来实现多机器人的自适应编队方法给出了详细的系统描述。 The research actuality of reinforcement learning in inland and oversea is introduced in this paper. The method in which Q-learning and neural network are used to implement adaptive team formation of multi-agent system is presented in detail.
出处 《计算机工程》 CAS CSCD 北大核心 2002年第6期15-16,98,共3页 Computer Engineering
基金 国防基础计划资助项目
关键词 强化学习 多机器人 编队方法研究 神经网络 Reinforcement learning Multi-agent Team formation Neural network
  • 相关文献

参考文献2

二级参考文献12

共引文献45

同被引文献64

  • 1沈捷,费树岷,刘怀.多移动机器人组成任意队形的控制研究[J].机器人,2004,26(4):295-300. 被引量:7
  • 2魏英姿 ,赵明扬 .强化学习算法中启发式回报函数的设计及其收敛性分析[J].计算机科学,2005,32(3):190-193. 被引量:13
  • 3CHONGJIE Z, LESSER V, SHENOY P. A multi-Agent learning approach to resource sharing across computing clusters [R]. Computer Science Department, University of Massachusetts Computer Science Amherst UMass, UM-CS- 20084)35, 2008.
  • 4KO P C, LIN P C, YOU J A, et al. Multi-layer allocated learning based neural network for resource allocation optimization[ C]// Proceedings of the 9th Joint Conference on Information Sciences(JCIS 2006). Taibei, China, 2006 : 35-41.
  • 5TESAURO G. Online resource allocation using decompositional reinforcement learning [ C ]//Proceedings of AAAI 2005. Pittsburgh, USA, 2005: 886-891.
  • 6LI3TMAN M L, STONE P. Leading best-response strategies in repeated games [C]//The 17th Annual International Joint Conference on Artificial Intelligence Workshop on Economic Agents, Models, and Mechanism. Seattle, Washington, USA, 2001: 745-756.
  • 7HU J, WELLMAN M P. Multiagent reinforcement learning in stochastic games [OL]. Citeseer. ist. psu. edu/ hu99multiagent. Html, 1999.
  • 8BUSONIU L, De SCHUTTER B, BABUSKA R. Multiagent reinforcement learning with adaptive state focus [C]//Proceedinga of the 17th Belgium-Nethedands Conference on Artificial Intelligence. Brussels, Belgium, 2005: 35-42.
  • 9KOK J R, VLASSIS N. Collaborative muhiagent reinforcement learning by payoff propagation[J]. Journal of Machine Learning Research, 2006, 7: 1789-1828.
  • 10HU J, WELLMAN M P. Nash Q-learning for general-sum stochastic games [ J ]. Journal of Machine Learning Research, 2003, 4 : 1039-1069.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部