期刊文献+

一类Julia分形图及其计算机构造(英文)

One Class of Julia Fractal Patterns and Their Constructions
下载PDF
导出
摘要 分形理论及其构造方法的研究目前已吸引了包括生物数学家在内的众多领域学者的关注.本文讨论了一类有理函数映射下的Julia分形集的性质,以及构造这类分形集的广义割线方法,并证明了该方法的收敛性.分析并讨论了所构造的新一类分形图谱的特点,并进一步支持了算法的有效性. Fractal theory and its construction methods have been attracting much attention recently. In this paper, a class of Julia fractal patterns generated from rational function mapping are discussed, and their construction method, generalized Secant method, is given. The convergence of the method is discussed, and their images also support the analyses of the algorithm.
出处 《生物数学学报》 CSCD 2002年第2期243-250,共8页 Journal of Biomathematics
基金 The Research is Supported by the Natural Science Foundation of China (69974008)
关键词 Julia分形图 计算机构造 JULIA集 Steffensen方法 割线法 Fractal Julia set StefFensen method Secant method
  • 相关文献

参考文献9

  • 1Phil Laplante. Fractal[M]. ManiaMcGraw-Hill, 1993, 38-47.
  • 2Joe Pritchard. The Chaos Cookbook[M]. Linacre House, Jordan Hill, 1992, 112-156.
  • 3Mieczyslaw Szyszkowicz. Computer Art Generated by the Method of Secants in theComplex Plane[J].Computer & Graphics, 1990, 14(5):509.
  • 4John Dewey Jones. The Method of Secants[J]. Computer& Graphics, 1991, 15(3):451454.
  • 5Wark A. Motyka. Chaos and Newton's Method on System[J]. Computer& Graphics,1990. 14(1):131 131.
  • 6Michael Levin. Discontinuous and Alternate Q-system Fractals[J]. Computer &Graphics, 1994. 18(6):873884.
  • 7Duan Xiaodong. Fractal theory & its effect on computer science and relatedfields[J]. Journal of northenste rnunitersity (in Chinese), 1995, 16(S):1 7.
  • 8Liu Xiangdong. The study on the topological invariant characters of the M set andthe periodic inlaid regularities of the M-J set of the one-parameter rationalfunctions[C]. Phd. Thesis(in Chinese), NortheasternUniversity, 1999, 64-72.
  • 9Yan Dejun, Liu Xiangdong. A study of Mandelbrot and Julia sets generated from ageneral complex cubic it eration[J]. Fractal, 1999, 7(4):433-437.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部