摘要
分形理论及其构造方法的研究目前已吸引了包括生物数学家在内的众多领域学者的关注.本文讨论了一类有理函数映射下的Julia分形集的性质,以及构造这类分形集的广义割线方法,并证明了该方法的收敛性.分析并讨论了所构造的新一类分形图谱的特点,并进一步支持了算法的有效性.
Fractal theory and its construction methods have been attracting much attention recently. In this paper, a class of Julia fractal patterns generated from rational function mapping are discussed, and their construction method, generalized Secant method, is given. The convergence of the method is discussed, and their images also support the analyses of the algorithm.
出处
《生物数学学报》
CSCD
2002年第2期243-250,共8页
Journal of Biomathematics
基金
The Research is Supported by the Natural Science Foundation of China (69974008)