期刊文献+

浅水中非线性波浪传播过程的数值模拟 被引量:1

Numerical simulation of nonlinear wave propagating in shallow water
原文传递
导出
摘要 采用混合的欧拉 拉格朗日法计算波浪传播问题 ;用 0 1混合边界元法求解流场边界的速度势与法向速度 ;用非线性波浪自由表面边界条件的时间过程积分来推算波浪演变过程 ;并在远端辐射边界采用阻尼层数值消波技术 ,以消除远端边界对波浪的反射作用 . The computation of nonlinear wave propagating in shallow water is the basic study of interaction between waves and ships in time domain. The mixed Eulerian Lagrangian procedure is adopted in this paper for the calculation of wave propagation. Meanwhile, the mixed 0 1 boundary element method is used to calculate the velocity potentials and their normal derivatives on the boundary. And the free surface boundary conditions are used for determining the time stepping integration of wave elevation. In addition, a damping layer or sponge layer is located at the free surface above the open boundary to absorb the wave energy. The numerical results show the nonlinear wave profile at different time. Finally, a brief analysis is done to compare the nonlinear waves and the linear waves in shallow water.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2002年第2期32-34,共3页 Journal of Dalian Maritime University
关键词 数值模拟 传播过程 浅水 非线性波浪 数值计算 ship shallow water nonlinear wave time domain calculation
  • 相关文献

参考文献3

  • 1柏威.非线性波浪与任意三维物体的相互作用[M].大连:大连理工大学,2001.59-60.
  • 2孙大鹏.波浪变形计算的三维数值模式[M].大连:大连理工大学,1998..
  • 3武际可 傅子智.工程师用的边界单元法[M].北京:科学出版社,1986.44-101.

同被引文献3

  • 1LONGUET-HIGGINS M S,COKELET E D. The deformation of steep surface waves on water:a numerical method of computation[A]. Proceedings of R Soc Lond A[C],1976,350: 1-26.
  • 2DOLD J W, PEREGRINE D H. Steep unsteady water waves: an efficient computational scheme[A]. Proceedings of 19th International Conference on Coastal Engineering[C], Houston.1984:955-967.
  • 3BREBBIA C A. The Boundary Element Method for Engineers[M]. John Wiley & Sons, 1978,1-55.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部