期刊文献+

一种基于梯度的HMM参数重估方法 被引量:2

A Gradient Based Estimation Method for HMMs
下载PDF
导出
摘要 对于隐 Markov模型 ( HMM) ,经典的参数重估方法是 Baum- Welch算法 .该算法基于最大似然准则 ,具有快速收敛和保证似然度单调增的优点 .但是对于其他的训练准则 ,则不存在这样的算法 .由于目标函数的复杂性 ,在考虑采用梯度方法时 ,必须先解决如何求取梯度的问题 .为此 ,提出一种求取梯度的实现方法 .结果表明 ,使用该方法所得的模型与用 Baum- Welch算法所得的模型性能相当 。 Baum Welch algorithm is a classical estimation method for HMMs, which is based on the maximum likelihood(ML) criterion. For other criteria, such as maximum mutual information (MMI) criterion, such an algorithm does not exist. In this case, a gradient based method is considered. With the complexity of objective function, the computation of the gradients has to be solved before it can be applied to this problem. This paper proposed an implementation method of the gradient based method. The experimental results indicate that this method produces comparable results to Baum Welch algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第5期683-685,共3页 Journal of Shanghai Jiaotong University
关键词 梯度法 隐MARKOV模型 语音识别 gradient method hidden Markov models(HMM) speech recognition
  • 相关文献

同被引文献7

  • 1何志国,何钦铭,陈奇,曹玉东.语音识别中结合进化计算与MDI的HMM训练方法[J].系统工程理论与实践,2006,26(7):54-58. 被引量:2
  • 2Rabiner L R, Juang B H. Fundamentals of speech recognition [M]. Englewood Cliffs: Prentice Hall,1993.
  • 3孙延奎,朱小燕.人工智能[M].第一版.北京:清华大学出版社.2004:220-246.
  • 4Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proc. IEEE, 1989, 77(2): 257-286.
  • 5Jie Ying, and Kirubarajan T. A hidden Markov-based algorithm for fault diagnosis with partial and imperfect tests [J]. IEEE Trans. on System Man and Cybernetics, 2000, 30(4):463-473.
  • 6Gales M J F. Cluster adaptive training of hidden Markov model [J]. IEEE Trans. on Speech and Audio Processing, 2000, 8(4): 417-432.
  • 7Chau C W, Wang S K, and Diu C K. Optimization of HMM by a genetic algorithm [C]. Proc, Munich, Germany, 1997: 1727-1730.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部