期刊文献+

关于琴生不等式的一些加细

On Some Refinements of the Jensen Inequality
下载PDF
导出
摘要 本文给出琴生不等式的一些加细 ,它包括若干相关结果的推广 (如正文的注释 1指出 ) 从文献上看 ,结果中出现涉及f1 ,n与fn ,n线性组合的不等式 (7)和 (8) ,在同类结果中似乎是新型 此外 ,推论 1和 2还给出了 (7)和 (8) In this paper we give several refinements of the Jensen inequality. A main theorem, which contains the generalization of the related results in a sense, is established.
出处 《成都大学学报(自然科学版)》 2002年第2期1-4,共4页 Journal of Chengdu University(Natural Science Edition)
基金 NSF of Chengdu University
关键词 凸函数 琴生不等式 加细 充分条件 线性组合不等式 and phrases:convex function, Jensen's inequality, refinement.
  • 相关文献

参考文献10

  • 1[1]Wang C - L. Inequalities of the Rado - Popoviciu type for functions and their applications[J]. J. Math. Anal. Appl, 1984,100:436~446.
  • 2[2]Mitrinovic D S, Pecaric J E. Unified treatment of some inequalities for mixed means[J]. Osterreich. Akad. Wiss. Math. - Natur. Kl Sonder druck Sitzungsber, 1988,197: 391 ~ 397.
  • 3[3]Pecaric J E, Volenec V. Interpolation of the Jensen inequality with some applications[ J]. Osterreich. Akad. wiss. Math. - Natur. Kl Sonder druck Sitzungsber ,1988,197 : 463 ~ 457.
  • 4[4]Pecaric J E, Svrtan D. New refinements of the Jensen inequalities based on amples with repetitions[J]. J. Math. Anal. Appl, 1998,222:365 ~ 371.
  • 5[5]Gabler S. Folgenkonvexe Funktionen [ J ]. Manuscripta math. 1979,29: 29 ~ 47.
  • 6[6]Pecaric J E. Remark on an inequality of S. Gabler[J]. J. Math. Anal. Appl, 1994,184:19 ~ 21.
  • 7[7]Yang G.S, Wang C- S. Some refmement of Hadamard's inequality [J]. Tamkang J. Math. 1997,28:87~92.
  • 8[8]Brnetic I, Pearce C E M, Pecaric J. Refinements of Jensen's inequality[J]. Tamkang J. Math..2000,31:63~69.
  • 9[9]Luo Zhao, Yang Rongxian, Wen Jiajin. Inequalities of Rado- Popoviciu Type for the pair of functions and their applications[ J ]. J.Neijiang Normal Institute(Nat. Sci. ), 1999,14(4) :9 ~ 14. (In Chinese)
  • 10[10]Mitrinovic D S, Pecaric J E. Classical and new inequalities in analysis[M]. Dordrecht:Kluwer Academic, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部