摘要
本文讨论了在非均匀板中,散射和裂变是各向异性的与时间有关的中子迁移方程,运用有界线性算子的半群理论证明了:(i)在连续函数究间C(G)中,方程非负解的存在唯一性(迁移算子的定义域在这类空间中不稠)。(ii)这方程的解能以相应的离散纵标方程的解一致逼近。
This paper discusses the time-dependent neutron transport equation in inhomo-geneous slab with anisotropic scattering and fission. By means of the theory of integrated semigroup of bounded linear operators. We prove: (i) the existeec and uniqueness of non-negative solutions of the equation in the continuous function space C ( G ) (in which the domain of the transport operator is not dense), ( ii) the solution of the equation can be approximated uniformly by the solution of the corresponding discrete ordinates equations.
出处
《信阳师范学院学报(自然科学版)》
CAS
1991年第2期113-119,共7页
Journal of Xinyang Normal University(Natural Science Edition)
关键词
迁移方程
只分半群
离散纵标法
integrated semigroup, transport equation, discrete ordinates.