摘要
本文从静态轴对称度规的一般表达式ds^2=-e^(2u)(dx^0)~2+e^(-2u)[e^(2k)(dx^1)~2+e^(2k)(dx^2)~2+ρ~2(dx^3)~2]出发,结合Einstein-Maxwell方程组,应用渐近平直条件求出弯曲空间中的静电场,解出了荷电柱状天体(静态)外部度规的四级近似解。
In this paper,we start from the most general axisymmetric,static line elementds^2=—e^(Zu)(dx^0)~2+e^(-Zu)[e^(Zk)(dx^1)~2+e^(2k)(dx^2)~2+p^Z(dx^3)~Z],and solve the sta-tic electric field in the presence of gravitation using the condition of asympt-otic flat.Then we solve the Einstein-Maxwell equations,and obtain the soluti-on of the external metric for a charged cylindrical celestrial body up to four degreeapproximation.
出处
《湖南师范大学自然科学学报》
CAS
1989年第1期28-35,共8页
Journal of Natural Science of Hunan Normal University
关键词
柱状天体
引力场
度规
计算
Einstein-Maxwell equations
axisymmetric static metric
cylindrical celestrial body
Ricci tensor
energy-momentum tensor
gravitational field