期刊文献+

人工神经网络约束模型在造林规划上的应用研究 被引量:1

A Study on the Application of the Satisfaction Restriction Modelof Artificial Neural Network to Afforestation Programme
下载PDF
导出
摘要 系统地介绍了神经网络满意约束模型在造林规划上的应用研究 ,该模型简单方便 ,可实现树种优化安排。最终在计算机上模拟了这个过程 ,结果表明利用该模型收敛速度较快 。 Systematically this artical discusses the application of the satisfaction restriction model of artificial neural network to afforestation programme. This model, simple and convenient, can be used in the species optimum arrangement. And a computer simulation of experimental process was done. Results show that this model has faster convergent speed and good adaptability.
出处 《江西农业大学学报》 CAS CSCD 2002年第3期360-362,共3页 Acta Agriculturae Universitatis Jiangxiensis
关键词 应用 人工神经网络 造林规划 满意约束模型 计算机模拟仿真 artificial neural network afforestation programme satisfaction restriction model
  • 相关文献

参考文献1

二级参考文献3

  • 1[1]Angeline P J et al. An evolutionary algorithm that construct recurrent neural networks.IEEE Trans Neural Network.,1994,5(1)
  • 2[2]Forgel D B.An introduction to simulated evolutionary optimization.IEEE Trans Neural Neworks,1994,5(1)
  • 3[3]Goldberg D E.Genetic Algorithms in search.Optimization and machine learning Readding.MA:Addison-Wesley,1989,27~93

共引文献5

同被引文献17

  • 1Batchelor W D, Yang X B, Tschanz A T. Development of a neural network for soybean rust epidemics [J]. Transactions ASAE, 1997,40(1) :247- 252.
  • 2Sui Daniel Z. Recent applications of neural networks for spatial data handling [ J ]. Canada Journal of Remote Sensing, 1994,20(4) :368 - 380.
  • 3Hsiao PaiLing, Chen ChaurTzuhn, Hsiao PL, et al. Study in neural network and SPOT image classification [J] .Bulletin of National Pingtung University of Science and Technology, 2000,9(3): 187- 197.
  • 4Zhang X, Li C, Yuan Y. Application of neural networks to identifying vegetation types from satellite images [ J ] .AI - Applications, 1997,11 (3): 99 - 106.
  • 5Guan B T, Gertner G. Using a parallel distributed processing system to model individual tree mortality[J ]. Forest Science, 1991,37(3) :256 - 260.
  • 6Okayama Y. A primitive study of fire detection method control by artificial neural net [ J ]. Fire Safety, 1991,17(6) :535 - 553.
  • 7Vega Garcia C, Woodard PM, Titus SJ, et al. Two models for fire occurrence prediction in Whitecourt Forest, Canada[ J ]. Investigacion Agraria Sistemasy Recursos Forestales[J ] . 1999,8(1) :5 - 23.
  • 8Chon TaeSoo, Young Seuk, Kim JaMyung, et al . Use of an artificial neural network to predict population dynamics of the forest pest pine needle gall midge (Diptera:Cecidomyiida) [ J ]. Environmental Entomology, 2000, 29(6): 1 208 - 1 215.
  • 9Zhang QiBin, Hebda RJ, Zhang QiJun, et al . Modeling tree - ring growth responses to climatic variables using artificial neural networks [ J ]. Forest Science, 2000,46 (2):229 - 239.
  • 10Abuelgasim AA, Sucharita Gopal, Strahler AH, et al . Forward and inverse modeling of canopy directional reflectance using a neural network[J]. International Journal of Remote Sensing, 1998,19(3) :453 - 471.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部