期刊文献+

多变量时间序列的邻域预测法

Time Series Prediction by Multivariate Next Neighbor Methods
原文传递
导出
摘要 在非线性动力系统中 ,邻域预测法已经很广泛地应用于单变量时间序列 ,本文将这些方法 ,特别是COM法和LL法 ,推广应用于多变量时间序列。当时间序列很短而同时有多个变量的时间序列可测量时 ,多个变量比单变量在长时间序列中更能提供有效信息从而获得更好的预测结果。 In the non linear dynamics system,next neighbor prediction methods have been successfully applied to univariate time series.This paper generalizes these methods,in particular,center of mass prediction (COM prediction)and local linear prediction(LL prediction),to multivariate time series.The use of multiariate prediction techniques is especially useful when time series are short but several variables have been measured simultaneously.These additional variables can sometimes supply more effective information,thus obtaining better prediction results.
作者 周述琴
出处 《重庆师范学院学报(自然科学版)》 2002年第2期17-19,共3页 Journal of Chongqing Normal University(Natural Science Edition)
关键词 多变量时间序列 邻域预测法 COM预测法 LL预测法 mutivariate time series COM prediction LL prediction
  • 相关文献

参考文献6

  • 1[1]LORENZ E.Atmospheric Predicatability as Revealed by Naturally Occurring Analogues[J].J Atmos Sci,1969,26:636-641.
  • 2[2]LITTLE S,ELLNER S,PASCUAL M,et al.Detecting Nonlinear Dynamics in Spatio-temporal Systems.Examples from Ecological Models[J].Physica D,1996,96:321-333.
  • 3[3]PRESS W H,FLANNERY B F,TEUKOLSKY S A,et al.Numerical Recipes[M].Cambridge:Cambidge University Press,1986.
  • 4[4]TAKENS F .Detecting Strange Attractors in Turbulence[A].BAND D A,YANG L S .Dynamical Systems and Turbulence[C].Berlin Springer,1980.366-381.
  • 5[5]SCHREIBER T.Efficient Neighbor Searching in Nonlinear Time Series Anasysis[J].Int J Bifurcation Chaos,1995,(5) :349-358.
  • 6[6]BINGHAM,KOT M.Multidimensional Trees,Range Searching,and a Correlation Dimension Algorithm of Reduced Complexity[J].Phys Letter A,1989,140:327-330.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部