期刊文献+

角动量系统在外加旋转磁场下的非绝热Berry相

Non-adiabatic Berry phase of angular momentum system in a rotating magnetic field
原文传递
导出
摘要 利用 Mathematica软件求解了角动量 l=1的系统在强外加旋转磁场下的含时间 Schr dinger方程 ,得出了非绝热条件下的精确解 ,给出了任意初始态在非绝热条件下成为周期态的条件。比较绝热条件下瞬时态的 Berry相和非绝热过程的 Aharonov- Anandan相因子 ,发现在磁场缓慢旋转的极限下二者趋于一致。还利用算符分解方法给出了任意大l的量系统的解的形式 ,并对 l=1的情况得出了与 Mathe-matica精确解法同样的结果 ,从另一个角度给出了非绝热Berry相。 A software Mathematica was used to obtain an exact non-adiabatic solution to the time-dependent Schrodinger equation for an angular momentum l=1 system in a rotating magnetic field. Conditions are given for an arbitrary initial state in the non-adiabatic process to become a cyclic one. Comparison of the Berry phase for an adiabatic instantaneous state and the non-adiabatic Aharonov-Anandan phase shows that they tend to coincide in the limit of a slowly rotating field. The Operator Decomposition Scheme was used for an arbitrary angular momentum system to obtain the form of the solution. For the case of l=1, the result was the same as that given by Mathematica, thus exhibiting another formalism for the non-adiabatic Berry phase. This method can be generalized to study the topological phase factor of a coupled spin-chain model.
作者 吴振华 徐湛
机构地区 清华大学物理系
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第6期743-746,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"攀登计划 A"
关键词 角动量系统 旋转磁场 非绝热Berry相 Aharonov-Anandan相因子 Berry phase Aharonov-Anandan phase topological phase non-adiabatic condition angular momentum system
  • 相关文献

参考文献8

  • 1[1]Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proc Roy Soc Lond, 1984, A392: 45-57.
  • 2[2]Aharonov Y, Anandan J. Phase Change during a Cyclic Quantum Evolution [J]. Phys Rev Lett, 1987, 58: 1593-1596.
  • 3[3]Cronin J. Differential Equations [M]. New York: Dekker, 1980.
  • 4[4]Moore D J. The Calculation of Nonadiabatic Berry Phases [J]. Phys Reports, 1991, 210(1): 1-43.
  • 5[5]Fernández D J, Nieto L M, del Olmo M A, et al, Aharonov-Anandan geometric phase for spin-1/2 periodic Hamiltonians [J]. J Phys A: Math Gen, 1992, 25: 5151-5163.
  • 6[6]Lei Y A, Zeng J Y. Nonadiabatic Berry Phase of a Two-State System and Nonstationarity of Quantum States [J]. Commun Theor Phys, 1997, 27: 435-442.
  • 7[7]Yang L G, Yan F L. The area theorem of the Berry phase for the time-dependent externally driven system [J]. Phys Lett A, 2000, 265: 326-330.
  • 8[8]Moore D J, Stedman G E. Non-adiabatic Berry phase for periodic Hamiltonians [J]. J Phys A: Math Gen, 1990, 23: 2049-2054.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部