期刊文献+

基于粗集理论的信息熵属性约简算法 被引量:2

Reduct Algorithm Based on Information Entropy and Rough Set Theory
下载PDF
导出
摘要 本文针对粗集属性约简存在的问题,提出了一种基于信息熵的属性约简算法。算法中引入了信息熵的概念代替粗集约简g准则作为属性选择的标准,克服了粗集约简g准则对数据噪声的敏感性和不能表达属性间概率因果关系的缺点。本文通过两个实例表明,当属性间存在确定性关系时算法能够象粗集约简g准则一样找到表达这些关系的属性集;当属性间是概率因果关系,或确定性关系被数据噪声所掩盖,因而粗集约简g准则无法使用时,算法能够找到具有确定性关系的属性集,或是具有最小不确定性概率因果关系的属性集。 A new Information Entropy based reduct searching algorithm is proposed to tackle the problems involved in Rough set based reducting. Instead of Rough set reductingγcriterion, the new algorithm adopt information entropy as attribute selecting criterion. Using this algorithm, problems in prior criterion, such as sensitive to the data noise, unable to express the probability causality between attributes, can be solved. Two illustrated examples show that when there exists deterministic relationship between attributes, new algorithm can give the set of attributes expressing this relationship as the Rough set reductingγcriterion. When relationship between attributes is probability causative, or deterministic relationship is emerged by noise, Rough set reductingγcriterion becomes useless. However, in these cases, the proposed algorithm can give the correct answer needed.
出处 《电路与系统学报》 CSCD 2002年第2期96-100,共5页 Journal of Circuits and Systems
关键词 约简 粗集 信息熵 粗集约简γ准则 Reduct, Rough sets, Information Entropy, criterion
  • 相关文献

参考文献9

  • 1[1]Shusaku Tsumoto, Hiroshi Tanaka. Extraction of Domain Knowledge from Databases based on Rough Set Theory[A], Proceedings of Fifth IEEE International Conference on Fuzzy Systems[C], 2: 748-754.
  • 2[2]Mrozek A. Rough sets and dependency analysis among attributes in computer implementations of expert's inference models[J]. Int. Jour. Man-Machine Studies, 1989, 30:457-473.
  • 3[3]Dimitras A I, Slowinski R, Susmaga R, Zopounidis C. Business failure prediction using rough sets[J]. European Journal of perational Research, 1999, 114 263-280.
  • 4[4]Jackson A G, et al. Rough sets applied to the discovery of materials knowledge[J]. Journal of Alloys and Compounds, 1998. 279:14-21.
  • 5[5]Aleksander Ohrn, Discernibility and Rough Sets in Medicine: Tools and Applications[D]. Norwegian University of Science and Technology, Department of Computer and Information Science, N-749 Trondheim, Norway, 1999. 53.
  • 6[6]Pawlak Z.. Rough sets-theoretical Aspects of Reasoning about Data[M]. Boston, London: Kluwer Acdamic Publisher, 1992,1-53.
  • 7[7]Ivo Duntsch, Gunther Gediga. Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998. 106:109-137.
  • 8[8]Ivo Duntsch, Gunther Gediga. Roughian-rough information analysis (extended abstract)[A], A. Sydow, Proceedings 15th IMACS World Congress[C], Wissenschaft and Technik, Berlin, 1997,4:631-636.
  • 9[10]Slowinski K, et al. Sensitivity analysis of rough classification[J]. Int. J. Man-Machine Studies, 1990, 32: 693-705.

同被引文献19

  • 1刘萍,王周敬.基于粗糙集和信息熵的属性约简算法[J].福建电脑,2005,21(10):68-69. 被引量:3
  • 2蒋朝哲.粗集多属性决策理论与方法[M].成都:西南交通大学出版社,2007:48-53.
  • 3Humphreys P,Matthews J,Kumaraswamy M.PreConstruction Projoct Partnering:From AdversariaI to Collaborative Relationships[J].Supply Chain Management:An International Journal,2003,(8)2:166-178.
  • 4Chan F T S,Qi H J.An Innovative Performance Measurement Method for Supply Chain Management[J].Supply Chain Management:An International Journal,2003,(8)3:209-223.
  • 5Hu X,Cercone N.Learning in Relational Database:A Rough Set Approach[J].International of Computational Intelligence,1995,(11)2:323-338.
  • 6Han Jiawei, Kamber Micheline. Data Mining: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann Publishers,Inc, 2001
  • 7YongSeog Kim. Feature selection in supervised and unsupervised learning via evolutionary search: [ Ph. D. dissertation ] . Iowa:University of Iowa, 2001
  • 8Z. Pawlak. Rough sets. International Journal of Computer and Information Science, 1982, 11(5): 341~356
  • 9Zhai Lian-Yin, Khoo Li-Pheng, Fok Sai-Cheong. Feature extraction using rough set theory and genetic algorithms-An application for the simplification of product quality evaluation.Computers and Industrial Engineering, 2002, 43(4): 661~676
  • 10Jensen Richard, Shen Qiang. Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems, 2004,141(3): 469~485

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部