期刊文献+

一维纳米体系的电子结构 被引量:1

The electronic structure of one-dimension nanometer system
下载PDF
导出
摘要 建立了一维纳米随机链模型 ,在计及近邻、次近邻相互作用情况下 ,采用新的方法计算了链长从 1× 10 4~1× 10 5个原子系统的电子本征值和本征矢 .针对晶界原子畸变和晶粒大小等物理量 ,讨论了一维纳米体系的电子结构 .研究结果表明 ,晶界原子畸变和晶粒尺寸对其电子结构有重要影响 .由于晶界原子对电子的散射作用 ,电子波函数出现局域化 .晶界原子畸变越大 ,晶粒尺寸越小 ,散射作用越明显 .晶界原子畸变参数W由 0 .2增加到 1时 ,电子波函数由扩展态变为局域态 ;晶粒尺寸变小时 ,电子波函数对称性变差 ,电子趋向局域分布 .随着晶界原子畸变程度的增大和晶粒尺寸的减小 。 A one dimensional random nanometer chain model is founded and a new method to solve the eigenvectors is developed. Aimed at factors of the crystalline grain size and the distortion of interfacial atoms, the paper discusses the electronic structure of one dimension nanometer system by calculating the eigenvectors of the one dimension random nanometer chain model. The result shows that the crystalline grain size and the distortion of interfacial atoms have important influence on the electronic structure. The localized states formed in the system, and the localized degree increases with enhancing the distortion of interfacial atoms and decreasing the crystalline grain size.
出处 《中南工业大学学报》 CSCD 北大核心 2002年第1期107-110,共4页 Journal of Central South University of Technology(Natural Science)
关键词 纳米体系 电子波函数 电子局域态 晶界原子畸变 nanometer system electronic structure electronic localized states distortion of interfacial atoms
  • 相关文献

参考文献8

  • 1[1]Birringer R,Gleiter H.Nanocrystalline materials approach to a novel solid structure with gas-like disorder[J].Phys Lett,1984,A102:365-369.
  • 2[2]Ball P,Li G.Science at atomic scale[J].Nature,1992,355:761-766.
  • 3[3]Furukawa S,Miyasato T.Quantum sizeeffects on the optical band gap of microcrystalline Si∶H[J].Phys Rev,1988,B38:5 726-5 731.
  • 4[4]Lu K,Wang J T,Wei W D.Comparison of properties of nanocrystalline and amorphous Ni-P alloys[J].J Phys,1992,D25:808-812.
  • 5[5]Wakai F.A super-plastic covalent crystal composite[J].Nature,1990,344:421-423.
  • 6[6]Gleiter H.Nanocrystalline materials[J].Progress in Matter Sci,1989,33:223-227.
  • 7[7]Dean P,Martin J L.Frequency spectra of disordered lattices in two-dimensions[J].Proc Roy Soc,1960,A259:409-417.
  • 8[8]Wu S Y,Zheng Z B.Applications of infinite order perturbation theory[J].Phys Rev,1981,B24:4 787-4 796.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部