摘要
储层岩石的渗透率分布的不均匀性直接影响油气分布、运移以及开采。目前 ,在井资料十分有限的勘探初期 ,利用地震资料难以预测渗透率。因此 ,探讨利用地震属性预测渗透率具有重要的理论和实际意义。地震属性数据预测渗透率的 Rough Set(RS)与 Genetic Algorithm BP(GABP) (粗集与遗传 BP神经网络 )相结合的方法预测渗透率得到了令人满意的结果。表明 :1利用地震属性在勘探早期预测储层的渗透率是完全可能的 ;2应用实例表明 ,该方法的预测精度较高。因此 ,本方法将成为地震数据预测渗透率的有效手段。
The heterogeneity of the permeability distribute of rock directly influences the distribution,migration and production of hydrocarbons.At present,it is hardly p ossible to apply seismic data to predict permeability in the early period of exp loration when the well is not enough for founding the statistical relationship.I n this paper,it is very significance to discuss the problem that apply the seism ic attribute data to predict permeability.We briefly introduce the procedure of the RS and GABP to predict permeability.The application result indicates that:1. it is possible to apply seismic attribute data to predict permeability in explor ation early-stage; 2.the method is very effective.So it can become an effective means for permeability prediction with seismic data.
出处
《石油学报》
EI
CAS
CSCD
北大核心
2001年第6期34-36,共3页
Acta Petrolei Sinica
基金
国家"8 63"项目 (863 -3 0 6-0 4-0 3 -1A)
"油气藏地质及开发工程国家重点实验室"开放基金项目部分研究成果
关键词
渗透率
地震属性
属性优化
遗传BP神经网络
permeability
seismic attribute
attrib ute optimization
genetic BP neural network