期刊文献+

一种新的模糊规则动态调整正则项系数的神经网络学习方法 被引量:4

A NOVEL NEURAL NETWORK LEARNING METHOD OF DYNAMICALLY TUNING REGULARIZATION COEFFICIENT ACCORDINT TO FUZZY RULES
下载PDF
导出
摘要 从偏差 方差模型出发 ,提出了一种通过模糊规则推理动态调整正则项系数的新方法 ,并有效地确定了模糊推理规则和隶属度函数 .并将该方法与BP算法和固定正则项系数的方法进行了比较 ,该方法具有精度高、收敛快和泛化能力高等优点 。 Based on bias-variance model, a novel method of dynamically tuning the regularization coefficient by fuzzy rules inference was proposed. The fuzzy inference rules and membership functions were effectively determined. Furthermore, the method was compared with the traditional BP algorithm and fixed regularization coefficien's method. The result is that the proposed method has the merits of the highest precision, rapid convergence and best generalization capacity. The capacity proposed method is shown to be a very effective method by several examples simulation.
作者 武妍 张立明
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2002年第3期189-194,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金 (批准号 3 9870 194)资助项目~~
关键词 动态调整 学习方法 神经网络 模糊规则推理 泛化能力 正则化 正则项系数 neural network fuzzy rule inference generaliation capacity regularization method
  • 相关文献

参考文献1

二级参考文献1

  • 1焦李成,神经网络计算,1993年

共引文献9

同被引文献33

  • 1朱燕飞,蔡永昶,毛宗源.基于T-S模型的锌钡白干燥煅烧过程自适应神经模糊推理系统建模[J].信息与控制,2004,33(4):472-475. 被引量:5
  • 2韩敏,范迎南,孙燕楠.改进的模糊神经网络应用于投标报价[J].系统工程理论方法应用,2005,14(5):443-448. 被引量:5
  • 3张胜,刘红星,高敦堂,王蔚.神经网络泛化特性改善方法[J].计算机应用与软件,2005,22(12):12-14. 被引量:10
  • 4陈伟,冯斌,孙俊.基于QPSO算法的RBF神经网络参数优化仿真研究[J].计算机应用,2006,26(8):1928-1931. 被引量:23
  • 5荣国威,王承武.骨折[M].北京:人民卫生出版社,2007:464-465.
  • 6Sun Jun,Feng Bin,Xu Wenbo.Particle swarm optimization with particles having quantum behavior[C].IEEE Int Conf on Evolutionary Computation.Piseataway:IEEE,2004:325-331.
  • 7Kennedy J, Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Network, 1995:1942-1948.
  • 8Bao Fang, Pan Yonghui,Xu Wenbo,A novel training algorithm for BP neural network[C].Proceedings of the International Symposium on Distributed Computing and Application to Business, Engineering and Science.Hangzhou:Shanghai University Press, 2006:767-770.
  • 9Moody J E,Rognvaldson T S.Smoothing regulizers for projective basis function networks [C]. Proceedings of 10th Annual Conference on Neural Information Process System.Cambridge, MA,USA:MIT Press,1997:585-591.
  • 10Soniag E D.Feedforward nets for interpolation and classification [J]. Journal of Computer and System Science, 2003,45: 626-632.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部