期刊文献+

非平凡子群皆自中心化的有限群(英文) 被引量:1

Finite Groups in Which Each Non-trivial Subgroup is Selfcentralizer
下载PDF
导出
摘要 群G的子群H称为G的自中心化子群,若CG(H)≤H.刻划了非平凡子群皆自中心化的有限 群. A subgroup H of a finite group G is called a selfcentralizer subgroup if CG(H)≤H. authors study those finite groups in which each non-trivial subgroup is selfcentralizer.
出处 《喀什师范学院学报》 2002年第3期21-23,共3页 Journal of Kashgar Teachers College
关键词 中心化子 自中心化子群 内幂零群 亚循环群 centralizer selfcentralizer subgroup inner-nilpotent group metacyclic group
  • 相关文献

参考文献6

  • 1[1]Fattahi A. Groups with only normal and abnormal subgroups[J]. J Algebra, 1974,28 :15-19.
  • 2[2]Legovini, Pierantanio. Finite groups whose subgroups are either subnormal or pronormal[J]. RendSem Math Unive Padova, 1981,65:47-51.
  • 3[3]Zhang Qinhai. Finite groups whose subgroups are subnormal or selfnormal[J]. Journal of ShanxiNormal University (Natural Science), 1991, (4) :9-11.
  • 4[4]Zhang Qinhai, Wang Junxin. Finite groups with only quasinormal and selfnormal subgroups[J].Acta Math Sincia, 1995,38(3): 381-385.
  • 5[5]Robinson DJS. A coures in the Theory of Groups[M]. Springer-Verlag, Berlin, Heidelberg, NewYork: 1982.
  • 6[6]Xu Mingyao. Finite Groups (Chinese) [M]. Science Publishing House, 2001.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部