摘要
定义了上侧与下侧Laplace -Stielejes变换及对应的指数级数 ,建立了该变换所定义的整函数f1(s) ,f2 (s) (即变换的象函数 )及其迭代的复合函数f1[f2 (s) ]的下级的理论 ;通过引入一个紧致拓扑空间 ,根据随机Dirichlet级数的a.s.性质 ,建立了整函数f2 (s)及f1[f2 (s) ]的q .s.
The upeen side and lower side Laplace-Stieltjes transform and it's corresponding exponential series are defined.The lower order theory of the in analytic function f 1(s),f 2(s) (image of the transform)defined by the tansform and compound in analytic function f 1 iteration by f 1(s),f 2(s) are established.By defining a closed topological space,and the basis almost-sure qualiy of the random dirichlet series,the quasi-sure growth of in analytic function f 2(s) and f 1 is estabished.
出处
《广东工业大学学报》
CAS
2002年第2期87-91,共5页
Journal of Guangdong University of Technology