期刊文献+

进一步探讨中值定理的逆 被引量:2

A Converse of the Mean Value Theorem for Integration
下载PDF
导出
摘要 从积分中值定理的逆出发 ,探讨出积分中值定理的逆的相关定理 ,并进一步推导出微分中值定理的逆的相关定理。 In this paper,we get the relation law of the converse of the mean value theorem for integration from the converse of the mean value theorem for integration and we also get the relation law of the converse of the mean theorem for differentiation.
作者 余桂东 张海
出处 《安庆师范学院学报(自然科学版)》 2002年第2期12-13,共2页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 积分中值定理 强形式 弱形式 the converse of the mean value theorem for integration strong form weak form the mean value theorem for integration the mean theorem for differentiation total extremum value total extremum value
  • 相关文献

参考文献4

  • 1[1]J.Tong.P.A.Braza.A Converse of the Mean Value Theorem [J].Amer, Math Monthly,1997,104(10):939-942.
  • 2[2]J.M Borwein and Xianfu Wang.The Converse of the Mean Value Theorem May Fail Generically [J].Amer, Math Monthly,1998,105(9):847-848.
  • 3[3]H.Fejzic and D.Rinne,More on a Mean Value Theorem Converse [J].Amer, Math Monthly,1999,106(5):454-455.
  • 4余桂东.积分中值定理的逆[J].安庆师范学院学报(自然科学版),2001,7(1):63-64. 被引量:1

二级参考文献3

  • 1[1]J. Tong. P. A. Braza,A Converse of the Mean Value Theorem[J]. Amer,Math Monthly,1997,104(7) :939-942.
  • 2[2]J. M Borwein and Xianfu wang. The converse of the Mean Value Theorem May Fail Generically[J]. Amer,Math Monthly, 1998.105(9) :847-848.
  • 3[3]H. Fejzic and D. Rinne. More on a Mean Value Theorem Converse[J]. Amer ,Math ,Monthly ,1999,106(5) :454-455.

同被引文献4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部