期刊文献+

遗传退火算法及收敛性分析(英文) 被引量:5

Genetic Annealing Algorithm and Its Convergence Analysis
下载PDF
导出
摘要 针对模拟退火算法收敛速度慢和遗传算法存在种群退化问题 ,将二者有机地结合在一起 ,提出了遗传退火算法 ,证明了该算法的收敛性 .仿真结果表明 ,遗传退火算法既克服了模拟退火算法收敛速度慢 ,又解决了遗传算法中种群退化问题 .该算法不仅适用于一般的组合优化问题 ,也适用于目标函数不确定和可变的情况 . Aiming at low convergence speed of simulated annealing algorithm and group degeneration in genetic algorithm, we present a genetic annealing algorithm that combines the above two ones and also prove its convergence. Simulation results illustrate that genetic annealing algorithm not only overcomes the low convergence speed in simulated annealing algorithm but also solves the group degeneration problem in genetic algorithm. This algorithm can be used to solve the problem with uncertain and variant objective function as well as general combined optimization problem.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第3期376-380,共5页 Control Theory & Applications
关键词 全局优化 遗传退火算法 收敛性 目标函数 global optimization genetic annealing algorithm convergence
  • 相关文献

参考文献5

  • 1Kang Lishan,Xie Yun,You Shiyong,etal.Nonnumerical-Prallel Algorithms(1)-Simulated Annealing Algoithms[M].Bejing:SciencePress,1994,4
  • 2Holland JH.Genetic algorithms[J].ScientificAmerican,1992,266(4):44-50
  • 3Rudolph J.Convergence analysis of canonical genetic algorithms [J].IEEE Trans.onNeural Networks,1994,5(1):96-101
  • 4Goldberg D E.A note on Boltzmann tourlament selectionfor genetic algorithmsandpopulation-oriented simulated annealing[J].Complex Systems,1990,4(4):445-460
  • 5Shamir N,saad D andMaronE.Preserving the diversity of ageneti callyevolvingpopulation ofnets using the functional behavior of neuron[J].ComplexSystems,1993,7(7):551-558

同被引文献31

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部