期刊文献+

一类非完整约束系统的镇定与能控性(英文)

Stabilization and Controllability of a Class of Nonholonomic Systems
下载PDF
导出
摘要 考虑非完整约束系统的镇定与能控性问题 .文中首先证明了虽然一般地说这类系统不能由光滑反馈镇定 ,但它的存在性依赖于初值 .当初值在一个零测集外时 ,这种反馈镇定确实存在 .然后我们证明了这类系统在分段光滑控制下全局可控 .由于证明是构造性的 ,它给出了相应的控制 . In this note, the stabilization and controllability of a class of nonholonomic control systems are considered. First of all, it is shown that even though in general a smooth state feedback control, which stabilizes the system, does exist , the existence depends on the initial position of the system. It does exist except a very limited measure_zero set. Then we show that the systems are globally controllable by piecewise smooth controls. As a corollary, the systems are finite time stabilizable by piecewise smooth control. The proofs are constructive so the controls are provided precisely.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第3期467-470,共4页 Control Theory & Applications
基金 supportedbyNational 973Project (G19980 2 0 3 0 8) .
关键词 非完整约束系统 镇定 能控性 状态反馈 有限时间控制 nonholonomic system stabilization controllability state feedback finite time control
  • 相关文献

参考文献6

  • 1Brockett R W. Asymptoticalstability and feedback stabilization [A].In: Brockett R W, Millman R S and Sussman HJ,eds. Differential Geometric Control Theory [M]. Boston:Birkhauser, 1983
  • 2Kolmanovsky I and McClamroch N H. Developments in nonholonomic control systems [ J]. IEEE Control Systern Magazine, 1995, 15(6):20-36
  • 3Sordalen O J and Egeland O. Exponential stabilization of nonholonomic chainedsystems [J]. IEEE Trans. Automatic Control, 1995,40(1):35 -49
  • 4Laiou M and Astolfi A. Discontinuous control of high-order generalized chainedsystems [J]. Systems & Control Letters, 1999,37(4):309-322
  • 5Hespanha J P and Morse A S. Stabilization of nonholonomic integrators vialogic-based switching [J]. Automatica, 1999,35(3):385-393
  • 6Sun X. Linearization and stabilization of Brockett integrators [A]. Proc. ChineseControl Conference'2000 [ C], Hong Kong, 2000,187-192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部