期刊文献+

定向可图的度偶序列(英文) 被引量:1

Degree Sequence of Oriented Graphs
下载PDF
导出
摘要 π为非负整数序列 ,若存在以该序列为度序列的图 ,则称 π为可图的 .特别的 ,若此图是一个定向图 ,该序列则称为是定向可图的 .本文提出了一个判断序列是否为定向可图的充分必要条件 。 A sequence π of nonnegative integers is said to be graphic if there is a graph whose degree sequence is π. Especially, if such graph is an oriented graph, the sequence is said to be oriented graphic. In this paper, we provide a sufficient and necessary condition to judge whether a sequence is oriented graphic. Furthermore, in the proof of the theorem, an algorithm is provided to construct the oriented graph with the given degree sequence when a certain pair of adjacency matrices has been found.
作者 李炯生 杨凯
出处 《数学研究》 CSCD 2002年第2期140-146,共7页 Journal of Mathematical Study
基金 Project supported by the National Natural Secience Foundatons of China(Grant No.199710 86 ) and the Doctoral Program Foundation of National Education Department ofChina
关键词 定向可图 度(偶)序列 定向图 graph realization degree sequence oriented graph
  • 相关文献

参考文献8

  • 1Anstee R P. Properties of a classof (0,1)-matrices covering a given matrix. Can. J. Math., 1982, 34(2):438-453
  • 2Avery P. Score sequence of oriented graphs. J. Graph Theory, 1991, 15:251~257
  • 3Bang C M, Sharp H. Score vectors of tournaments. J. Combinat. Theory Ser. B, 1979,26:81~84
  • 4Berge C. Graphs and Hypergraphs (transl. E.Minieka). North-Holland, Amsterdam. 1973
  • 5Fulkerson D R. Zero-one matrices with zero trace. Pac. J. Math. 1960, 10:831-836
  • 6Landau H G. On dominance relations and the structure of animal societies: III. Thecondition for a score structure. Bull. Math. Biophys., 1953, 15:143~148
  • 7Ryser H J. Matrices of zeros and ones in combinatroial mathematics. Recent Advancesin Matrix Theory, University of Wisconsin Press, 1964, 103~124
  • 8Thomassen C. Landau′s characterization of tournament score sequences. The Theoryand Applications of Graphs (Kalamazoo, Michigan, 1980), Wiley, New York, 1981, 589~591

同被引文献8

  • 1Bondy J A,Murty U S R.Graph Theory and Its Applications[M].New york:The Macmillan Press,1976.
  • 2Gantmacher F R.Theory of Matrices[M].New York:Chelsea,1960.
  • 3Landau H G.On the dominance relations and the structure of animal,III:The condition for a score structure[J].Bull.Math.Biophys.,1953,15:143-148.
  • 4Moon J W.Topics on Tournaments[M].New York:Holt,Rinehart and Winston,1968.
  • 5Reid K B,Lowell W Beineke.Selected Topics in Graph Theory-Tournaments[M].(Edited by Lowell W.Beineke and Robin J.Wilson).USA:Academic Press,1978.
  • 6Wan H H,Li Q.On the number of tournaments with prescribed score vector[J].Discrete Math.,1986,61:213-219.
  • 7Wei T H.The algebraic foundations of ranking theory[D].England:Cambridge Univ.,1952.
  • 8侯耀平.具有固定得分向量的竞赛矩阵的数目[J].数学学报(中文版),2001,44(1):111-116. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部