摘要
建立了含暂态稳定约束的最优潮流的数学模型 ,模型中考虑了多个预想事故。提出了一种基于原—对偶内点法的含暂态稳定约束的最优潮流算法。通过充分开发修正矩阵的稀疏性 ,并在求解时采用稀疏技巧 ,开发出了高性能的计算程序。在日本 6 0 Hz电力网的 1 0机模型系统的优化计算结果表明 ,所提算法不仅具有强大的处理等式约束和不等式约束的能力 ,而且具有良好的收敛性 ,能够有效地解决考虑多个预想事故时的含暂态稳定约束的最优潮流问题。
This paper presents a formulation of transient stability constrained optimal power flow (SCOPF), in which multi-contingency is considered. The paper also proposes a solution of SCOPF based on primal-dual interior point method (IPM). By studying the sparsity characteristic of the correction equation and employing sparse matrix technique, a SCOPF program is well developed. Test results reveal that the proposed solution approach has not only strong ability to deal with equality constraints and inequality constraints, but also good convergence. It is very effective to solve multi-contingency SCOPF problem.
出处
《电力系统自动化》
EI
CSCD
北大核心
2002年第13期14-19,共6页
Automation of Electric Power Systems
关键词
内点法
电力系统
暂态稳定约束
最优潮流计算
optimal power flow
primal-dual interior point method
transient stability analysis