摘要
证明了 2n端口旋转器集合RO(2n)构成群 ,而 2n端口反照器集合RF(2n)不是群 ,但 2n端口旋转器集合与反照器集合构成的集合RR(2n) =RO(2n)∪RF(2n)构成群 .根据群RO(2n)可以分解为两个子群或多个子群的直积与集合RF(2n)是群RR(2n)的子群RO(2n)的陪集 ,给出了用 (2 × 2 )
It is proved that the set RO(2n) of all 2n _port rotators forms group and the set RF(2n) of all 2n _port reflectors does not form group, but the set RR(2n)[RO(2n)∪RF(2n)] of all 2n _port rotators and all 2n _port reflectors forms group. Based on that group RO(2n) can be decomposed the direct product of two subgroups or some subgroups; and the set RF(2n) is the coset of the subgroup RO(2n) of group RR(2n) . It is presented that the principle circuit of 2n _port rotator and reflector is realized by using the direct product of (2×2)_port rotator and reflector.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2002年第3期89-92,共4页
Engineering Journal of Wuhan University
基金
国家自然科学基金资助研究项目 (5 99770 16 )
关键词
旋转器
反照器
群
真积
rotator
reflector
group
direct product