摘要
本文应用[1]提出的塑性全量理论中的控制变量(也称参变量)变分原理,对各级分段线性强化规律建立了相应的本构状态方程以及有限元求解公式,可使分段线性强化全量问题的数值解不需迭代.对于一般的(?)—(?)曲线,适当选择分段数目可达到足够的精度。本文给出了有一定代表性的手工及数值算例。
This paper presents the constitutive state-equations and FEM solution to PVP (parametric variational principle) of deformation theory given in Ref. 1. By the approach proposed, the numerical solution does not need any iteration for the piecewise linear hardening problems. To the general effective-stress effective-strain relations, enough accuracy may be expected provided the section number and the portions are properly chosen. Several typical examples are illustrated.
出处
《应用力学学报》
CAS
CSCD
北大核心
1991年第2期45-47,149,共3页
Chinese Journal of Applied Mechanics
关键词
塑性全量理论
分段线性强化
deformation theory, parametric variational principle, quadratic programming, constitutive state-equation.