摘要
本文运用模态应力,模态应变等概念,发展了一种本构积分中点算法。在简正坐标系下得到简单的算法公式。并对算法的精度和稳定性进行了计算验证和理论分析。本文算法的精度和稳定性比通用的屈服面校正方法——切线刚度—径向拉回方法要好。该法对复杂载荷情况下的弹塑性分析有一定的价值。
Applying the concepts of modal stress and modal strain, a constitutive integration algorithm is developed in this paper. Simple formula of the algorithm can be derived in normal coordinate system. Accuracy and stability of the algorithm are analyzed in theory and practice, the algorithm has the advantage over the popular yield surface correction method—tangent stiffness-radial return method in accuracy and stability. The recipe is of some value to elastoplastic analysis.
出处
《应用力学学报》
CAS
CSCD
北大核心
1991年第4期1-10,131,共10页
Chinese Journal of Applied Mechanics
关键词
弹塑性
本构积分
模态应力
constitutive integration, elastoplastic analysis, modal stress,modal strain, midpoint algorithm.