摘要
通过对双线性四边形单元增加一个非协调高阶项 ,构造了一个二阶问题的 5 -参数任意窄边四边形单元 ,用不同的估计技巧 ,在不满足正则剖分条件下证明它具有和类Wilson元相似的特殊收敛性质 ,即在精确解u∈H3(Ω)时 ,相容误差比插值误差高一阶 .
A new 5-parameter arbitrary narrow quadrilateral element for second-order problems is presented by adding a nonconforming high order form to bilinear element. It proves that this element has a similar special convergence behavior to quasi-Wilson element under irregular assumption of subdivision mesh, and by using very different estimate tricks, i.e., the consistency error is one order higher than that of interpolation error with the exact solution u∈H 3(Ω).
出处
《河南大学学报(自然科学版)》
CAS
2002年第2期14-19,共6页
Journal of Henan University:Natural Science
基金
国家自然科学基金 (No .198710 79)
河南省自然科学基金资助项目
关键词
5-参数
任意窄边四边形
特殊收敛性
非正则假设
parameter
arbitrary narrow quadrilateral element
special convergence behavior
irregular assumption